基于相互k近邻的引力聚类算法

Zhenming Ma, Jiaqi Xu, Ruixi Li, Jinpeng Chen
{"title":"基于相互k近邻的引力聚类算法","authors":"Zhenming Ma, Jiaqi Xu, Ruixi Li, Jinpeng Chen","doi":"10.1145/3611450.3611462","DOIUrl":null,"url":null,"abstract":"To address the problems of difficulty in determining the truncation distance, single definition of local density and low robustness of non-centroid assignment strategy and chain reaction in density peaking clustering algorithm (DPC), this paper proposes a gravitational clustering algorithm (GMNN) based on mutual K nearest neighbors. The algorithm redefines the similarity metric and local density using the mutual K-nearest neighbor approach. Based on the local gravity model, a two-step clustering strategy is designed to isolate the chain reaction to complete the clustering through the mutual gravity between points and clusters. It is marked by simulation experiments that DG-DPC algorithm is effective for both synthetic dataset and UCI dataset, and the accuracy rate is improved by 31.07%, 45.60%, 50.20%, and 35.5% on average relative to RE-DPC algorithm, DPC algorithm, GAP-DPC algorithm, and DG-DPC algorithm, respectively.","PeriodicalId":289906,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational clustering algorithm based on mutual K-nearest neighbors\",\"authors\":\"Zhenming Ma, Jiaqi Xu, Ruixi Li, Jinpeng Chen\",\"doi\":\"10.1145/3611450.3611462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problems of difficulty in determining the truncation distance, single definition of local density and low robustness of non-centroid assignment strategy and chain reaction in density peaking clustering algorithm (DPC), this paper proposes a gravitational clustering algorithm (GMNN) based on mutual K nearest neighbors. The algorithm redefines the similarity metric and local density using the mutual K-nearest neighbor approach. Based on the local gravity model, a two-step clustering strategy is designed to isolate the chain reaction to complete the clustering through the mutual gravity between points and clusters. It is marked by simulation experiments that DG-DPC algorithm is effective for both synthetic dataset and UCI dataset, and the accuracy rate is improved by 31.07%, 45.60%, 50.20%, and 35.5% on average relative to RE-DPC algorithm, DPC algorithm, GAP-DPC algorithm, and DG-DPC algorithm, respectively.\",\"PeriodicalId\":289906,\"journal\":{\"name\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611450.3611462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611450.3611462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对密度峰值聚类算法(DPC)中存在截断距离难以确定、局部密度定义单一、非质心分配策略鲁棒性低等问题,提出了一种基于互K近邻的引力聚类算法(GMNN)。该算法利用互k近邻法重新定义了相似度度量和局部密度。在局部引力模型的基础上,设计了两步聚类策略,隔离链式反应,通过点与簇之间的相互引力完成聚类。仿真实验表明,DG-DPC算法对合成数据集和UCI数据集都是有效的,相对于RE-DPC算法、DPC算法、GAP-DPC算法和DG-DPC算法,准确率平均分别提高了31.07%、45.60%、50.20%和35.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gravitational clustering algorithm based on mutual K-nearest neighbors
To address the problems of difficulty in determining the truncation distance, single definition of local density and low robustness of non-centroid assignment strategy and chain reaction in density peaking clustering algorithm (DPC), this paper proposes a gravitational clustering algorithm (GMNN) based on mutual K nearest neighbors. The algorithm redefines the similarity metric and local density using the mutual K-nearest neighbor approach. Based on the local gravity model, a two-step clustering strategy is designed to isolate the chain reaction to complete the clustering through the mutual gravity between points and clusters. It is marked by simulation experiments that DG-DPC algorithm is effective for both synthetic dataset and UCI dataset, and the accuracy rate is improved by 31.07%, 45.60%, 50.20%, and 35.5% on average relative to RE-DPC algorithm, DPC algorithm, GAP-DPC algorithm, and DG-DPC algorithm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropy-based Time-series Financial Distress Model Based on Attribute Selection and MetaCost Methods for Imbalance Class Joint Energy-Limited UAV Trajectory and Node Wake-Up Scheduling Optimization for Data Collection in Maritime Wireless Sensor Networks RHC Method Based 2D-equal-step Path Generation for UAV Swarm Online Cooperative Path Planning in Dynamic Mission Environment A Novel Control Scheme of Stable Electricity and High Efficiency Supply in SOFC-based DC Micro-grid Study on the fault diagnosis method of ship main engine unbalanced data based on improved DQN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1