获取诊断信息,用于隔离故障

Jun Tang, Jun Zhang, Xiaojun Wang, Zeyang Xia, Ying Hu, Jianwei Zhang
{"title":"获取诊断信息,用于隔离故障","authors":"Jun Tang, Jun Zhang, Xiaojun Wang, Zeyang Xia, Ying Hu, Jianwei Zhang","doi":"10.1109/ICINFA.2013.6720379","DOIUrl":null,"url":null,"abstract":"Robots in dynamic and uncertain environments are vulnerable to mission failures due to external perturbation or internal malfunctions. Diagnosis is the process to detect, locate or even assess the fault. Since robots rely on their function modules to sense the external environment, it is difficult to locate the fault under uncertainties of robot components. The situation can be worse when there is also uncertainty about the environment. To resolve this issue, this paper proposes a new method to actively gain diagnostic information to locate the failure-cause more accurately under uncertainties. An integrated strategy of self-function-checking and diagnostic-plan is described. Validation using JSHOP2 planner showed that robots using this strategy was able to locate failure-cause with high autonomy.","PeriodicalId":250844,"journal":{"name":"2013 IEEE International Conference on Information and Automation (ICIA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaining diagnostic information for fault isolation\",\"authors\":\"Jun Tang, Jun Zhang, Xiaojun Wang, Zeyang Xia, Ying Hu, Jianwei Zhang\",\"doi\":\"10.1109/ICINFA.2013.6720379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots in dynamic and uncertain environments are vulnerable to mission failures due to external perturbation or internal malfunctions. Diagnosis is the process to detect, locate or even assess the fault. Since robots rely on their function modules to sense the external environment, it is difficult to locate the fault under uncertainties of robot components. The situation can be worse when there is also uncertainty about the environment. To resolve this issue, this paper proposes a new method to actively gain diagnostic information to locate the failure-cause more accurately under uncertainties. An integrated strategy of self-function-checking and diagnostic-plan is described. Validation using JSHOP2 planner showed that robots using this strategy was able to locate failure-cause with high autonomy.\",\"PeriodicalId\":250844,\"journal\":{\"name\":\"2013 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2013.6720379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2013.6720379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人在动态和不确定环境中容易由于外部扰动或内部故障而导致任务失败。诊断是检测、定位甚至评估故障的过程。由于机器人依靠其功能模块来感知外部环境,在机器人部件不确定的情况下,很难对故障进行定位。如果环境也存在不确定性,情况可能会更糟。为了解决这一问题,本文提出了一种主动获取诊断信息的新方法,以在不确定情况下更准确地定位故障原因。提出了一种自功能检测与诊断计划相结合的策略。使用JSHOP2规划器的验证表明,使用该策略的机器人能够高度自主地定位故障原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gaining diagnostic information for fault isolation
Robots in dynamic and uncertain environments are vulnerable to mission failures due to external perturbation or internal malfunctions. Diagnosis is the process to detect, locate or even assess the fault. Since robots rely on their function modules to sense the external environment, it is difficult to locate the fault under uncertainties of robot components. The situation can be worse when there is also uncertainty about the environment. To resolve this issue, this paper proposes a new method to actively gain diagnostic information to locate the failure-cause more accurately under uncertainties. An integrated strategy of self-function-checking and diagnostic-plan is described. Validation using JSHOP2 planner showed that robots using this strategy was able to locate failure-cause with high autonomy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data fusion method for underwater object localization GPMSwLF: Group physiological monitoring system with location function Phase noise suppression for OFDM system with sparse constraint A design of surgical actuator instruments of new continuum institutions and finite element analysis An estimation method of optimal feature factor based on the balance of exploration and exploitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1