{"title":"灵活的FOND HTN规划:一个复杂性分析","authors":"Dillon Chen, P. Bercher","doi":"10.1609/icaps.v32i1.19782","DOIUrl":null,"url":null,"abstract":"Hierarchical Task Network (HTN) planning is an expressive planning formalism that has often been advocated to address real-world problems. Yet few extensions exist that can deal with the many challenges encountered in the real world, one being the capability to express uncertainty. Recently, a new HTN formalism for fully observable nondeterministic problems was proposed and studied theoretically. In this paper, we lay out limitations of that formalism and propose an alternative definition, which addresses and resolves such limitations. We also study its complexity for certain problems.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible FOND HTN Planning: A Complexity Analysis\",\"authors\":\"Dillon Chen, P. Bercher\",\"doi\":\"10.1609/icaps.v32i1.19782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical Task Network (HTN) planning is an expressive planning formalism that has often been advocated to address real-world problems. Yet few extensions exist that can deal with the many challenges encountered in the real world, one being the capability to express uncertainty. Recently, a new HTN formalism for fully observable nondeterministic problems was proposed and studied theoretically. In this paper, we lay out limitations of that formalism and propose an alternative definition, which addresses and resolves such limitations. We also study its complexity for certain problems.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v32i1.19782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Task Network (HTN) planning is an expressive planning formalism that has often been advocated to address real-world problems. Yet few extensions exist that can deal with the many challenges encountered in the real world, one being the capability to express uncertainty. Recently, a new HTN formalism for fully observable nondeterministic problems was proposed and studied theoretically. In this paper, we lay out limitations of that formalism and propose an alternative definition, which addresses and resolves such limitations. We also study its complexity for certain problems.