{"title":"配套公共PUF:超低能耗安全平台","authors":"Saro Meguerdichian, M. Potkonjak","doi":"10.1109/ISLPED.2011.5993602","DOIUrl":null,"url":null,"abstract":"Hardware-based physically unclonable functions (PUFs) leverage intrinsic process variation of modern integrated circuits to provide interesting security solutions but either induce high storage requirements or require significant resources of at least one involved party. We use device aging to realize two identical unclonable modules that cannot be matched with any third such module. Each device enables rapid, low-energy computation of ultra-complex functions that are too complex for simulation in any reasonable time. The approach induces negligible area and energy costs and enables a majority of security protocols to be completed in a single or a few clock cycles.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Matched public PUF: Ultra low energy security platform\",\"authors\":\"Saro Meguerdichian, M. Potkonjak\",\"doi\":\"10.1109/ISLPED.2011.5993602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware-based physically unclonable functions (PUFs) leverage intrinsic process variation of modern integrated circuits to provide interesting security solutions but either induce high storage requirements or require significant resources of at least one involved party. We use device aging to realize two identical unclonable modules that cannot be matched with any third such module. Each device enables rapid, low-energy computation of ultra-complex functions that are too complex for simulation in any reasonable time. The approach induces negligible area and energy costs and enables a majority of security protocols to be completed in a single or a few clock cycles.\",\"PeriodicalId\":117694,\"journal\":{\"name\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2011.5993602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Matched public PUF: Ultra low energy security platform
Hardware-based physically unclonable functions (PUFs) leverage intrinsic process variation of modern integrated circuits to provide interesting security solutions but either induce high storage requirements or require significant resources of at least one involved party. We use device aging to realize two identical unclonable modules that cannot be matched with any third such module. Each device enables rapid, low-energy computation of ultra-complex functions that are too complex for simulation in any reasonable time. The approach induces negligible area and energy costs and enables a majority of security protocols to be completed in a single or a few clock cycles.