近阈值最后一级缓存节能嵌入式应用

Mitali Sinha, Sidhartha Sankar Rout, G. Harsha, Sujay Deb
{"title":"近阈值最后一级缓存节能嵌入式应用","authors":"Mitali Sinha, Sidhartha Sankar Rout, G. Harsha, Sujay Deb","doi":"10.1109/IGCC.2018.8752134","DOIUrl":null,"url":null,"abstract":"State-of-the-art embedded processors find their use in several domains like vision-based and big data applications. Such applications require a huge amount of information per task, and thereby need frequent main memory accesses to perform the entire computation. In such a scenario, a bigger size last level cache (LLC) would improve the performance and throughput of the system by reducing the global miss rate and miss penalty to a large extent. But this would lead to increased power consumption due to the extended cache memory, which becomes more significant for battery-driven mobile devices. Near threshold operation of memory cells is considered as a notable solution in saving a substantial amount of energy for such applications. We propose a cache architecture that takes advantage of both near threshold and standard LLC operation to meet the required power and performance constraints. A controller unit is implemented to dynamically drive the LLC to operate at standard or near threshold operating region based on application specific operations. The controller can also power gate a portion of LLC to further reduce the leakage power. By simulating different MiBench benchmarks, we show that our proposed cache architecture can reduce average energy consumption by 22% with a minimal average runtime penalty of 2.5% over the baseline architecture with no cache reconfigurability.","PeriodicalId":388554,"journal":{"name":"2018 Ninth International Green and Sustainable Computing Conference (IGSC)","volume":"44 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Near Threshold Last Level Cache for Energy Efficient Embedded Applications\",\"authors\":\"Mitali Sinha, Sidhartha Sankar Rout, G. Harsha, Sujay Deb\",\"doi\":\"10.1109/IGCC.2018.8752134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art embedded processors find their use in several domains like vision-based and big data applications. Such applications require a huge amount of information per task, and thereby need frequent main memory accesses to perform the entire computation. In such a scenario, a bigger size last level cache (LLC) would improve the performance and throughput of the system by reducing the global miss rate and miss penalty to a large extent. But this would lead to increased power consumption due to the extended cache memory, which becomes more significant for battery-driven mobile devices. Near threshold operation of memory cells is considered as a notable solution in saving a substantial amount of energy for such applications. We propose a cache architecture that takes advantage of both near threshold and standard LLC operation to meet the required power and performance constraints. A controller unit is implemented to dynamically drive the LLC to operate at standard or near threshold operating region based on application specific operations. The controller can also power gate a portion of LLC to further reduce the leakage power. By simulating different MiBench benchmarks, we show that our proposed cache architecture can reduce average energy consumption by 22% with a minimal average runtime penalty of 2.5% over the baseline architecture with no cache reconfigurability.\",\"PeriodicalId\":388554,\"journal\":{\"name\":\"2018 Ninth International Green and Sustainable Computing Conference (IGSC)\",\"volume\":\"44 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Ninth International Green and Sustainable Computing Conference (IGSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2018.8752134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ninth International Green and Sustainable Computing Conference (IGSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2018.8752134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最先进的嵌入式处理器在基于视觉和大数据应用等多个领域得到了应用。这样的应用程序每个任务需要大量的信息,因此需要频繁地访问主内存来执行整个计算。在这种情况下,更大的最后一级缓存(LLC)将通过在很大程度上降低全局缺失率和缺失惩罚来提高系统的性能和吞吐量。但这将导致由于扩展缓存内存而增加的功耗,这对于电池驱动的移动设备来说变得更加重要。近阈值操作的存储单元被认为是一个显着的解决方案,在节省大量的能源,这类应用。我们提出了一种利用近阈值和标准LLC操作的缓存架构,以满足所需的功率和性能限制。控制器单元被实现以动态驱动LLC基于应用特定操作在标准或接近阈值操作区域运行。该控制器还可以对部分LLC进行电源闸通,以进一步降低泄漏功率。通过模拟不同的MiBench基准测试,我们表明,我们提出的缓存架构可以在没有缓存可重构性的情况下,比基准架构减少22%的平均能耗,最小的平均运行时间损失为2.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near Threshold Last Level Cache for Energy Efficient Embedded Applications
State-of-the-art embedded processors find their use in several domains like vision-based and big data applications. Such applications require a huge amount of information per task, and thereby need frequent main memory accesses to perform the entire computation. In such a scenario, a bigger size last level cache (LLC) would improve the performance and throughput of the system by reducing the global miss rate and miss penalty to a large extent. But this would lead to increased power consumption due to the extended cache memory, which becomes more significant for battery-driven mobile devices. Near threshold operation of memory cells is considered as a notable solution in saving a substantial amount of energy for such applications. We propose a cache architecture that takes advantage of both near threshold and standard LLC operation to meet the required power and performance constraints. A controller unit is implemented to dynamically drive the LLC to operate at standard or near threshold operating region based on application specific operations. The controller can also power gate a portion of LLC to further reduce the leakage power. By simulating different MiBench benchmarks, we show that our proposed cache architecture can reduce average energy consumption by 22% with a minimal average runtime penalty of 2.5% over the baseline architecture with no cache reconfigurability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Programming Technique for Energy-Efficient Multicore Systems Holistic Approaches to HPC Power and Workflow Management* IGSC 2018 PhD Workshop on Power/Energy Management at Extreme Scale [Copyright notice] DiRP: Distributed Intelligent Rendezvous Point for Multicast Control Plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1