基于gnn的用户转发行为预测方法

Shih-Yung Hsu, Yi-Hsuan Lee, Jing-Wei Huang
{"title":"基于gnn的用户转发行为预测方法","authors":"Shih-Yung Hsu, Yi-Hsuan Lee, Jing-Wei Huang","doi":"10.1109/ICASI57738.2023.10179520","DOIUrl":null,"url":null,"abstract":"As Neural Networks have achieved excellent results in many fields, researchers attempt to use Neural Networks to solve graph processing tasks such as node classification, link prediction, and graph classification. Graph Neural Network (GNN) is a machine-learning model that takes graphs as input. In this article, we select active users on a Twitter page and predict their retweet behaviors using Graph Attention Network (GAT). Negative sampling is also applied due to the imbalanced dataset. Experimental results show that GAT well predicts the retweet behavior and tweet count.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GNN-based Approach for User Retweet Behavior Prediction\",\"authors\":\"Shih-Yung Hsu, Yi-Hsuan Lee, Jing-Wei Huang\",\"doi\":\"10.1109/ICASI57738.2023.10179520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Neural Networks have achieved excellent results in many fields, researchers attempt to use Neural Networks to solve graph processing tasks such as node classification, link prediction, and graph classification. Graph Neural Network (GNN) is a machine-learning model that takes graphs as input. In this article, we select active users on a Twitter page and predict their retweet behaviors using Graph Attention Network (GAT). Negative sampling is also applied due to the imbalanced dataset. Experimental results show that GAT well predicts the retweet behavior and tweet count.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于神经网络在许多领域取得了优异的成绩,研究者们尝试用神经网络来解决节点分类、链路预测、图分类等图处理任务。图神经网络(GNN)是一种以图为输入的机器学习模型。在本文中,我们选择Twitter页面上的活跃用户,并使用图注意力网络(GAT)预测他们的转发行为。由于数据不平衡,还采用负抽样。实验结果表明,GAT可以很好地预测转发行为和推文数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GNN-based Approach for User Retweet Behavior Prediction
As Neural Networks have achieved excellent results in many fields, researchers attempt to use Neural Networks to solve graph processing tasks such as node classification, link prediction, and graph classification. Graph Neural Network (GNN) is a machine-learning model that takes graphs as input. In this article, we select active users on a Twitter page and predict their retweet behaviors using Graph Attention Network (GAT). Negative sampling is also applied due to the imbalanced dataset. Experimental results show that GAT well predicts the retweet behavior and tweet count.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1