基于智能激光雷达的V2V通信目标分类技术实现

Ansaf Abdulnagimov, Ekaterina Lopukhova, Gleb Alektorov, Nail Klyavlin
{"title":"基于智能激光雷达的V2V通信目标分类技术实现","authors":"Ansaf Abdulnagimov, Ekaterina Lopukhova, Gleb Alektorov, Nail Klyavlin","doi":"10.1145/3584202.3584304","DOIUrl":null,"url":null,"abstract":"The deep learning techniques have been shown to make a traffic objects classification system for V2V communications to ensure traffic safety and traffic flow prediction. The robust classifier on the base of MLP and PointNet are explored to recognize the traffic objects from lidar point clouds. The features of a lidar sensor, the lidar point cloud coordinate system and its complex properties for creation a smart traffic object detection and recognition model are described. The best configuration of PointNet architecture with hyperparameters are shown, which is more efficient and robust with respect to input perturbation and corruption of lidar point clouds.","PeriodicalId":438341,"journal":{"name":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intellectual lidar-based object classification for V2V communication technology implementation\",\"authors\":\"Ansaf Abdulnagimov, Ekaterina Lopukhova, Gleb Alektorov, Nail Klyavlin\",\"doi\":\"10.1145/3584202.3584304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deep learning techniques have been shown to make a traffic objects classification system for V2V communications to ensure traffic safety and traffic flow prediction. The robust classifier on the base of MLP and PointNet are explored to recognize the traffic objects from lidar point clouds. The features of a lidar sensor, the lidar point cloud coordinate system and its complex properties for creation a smart traffic object detection and recognition model are described. The best configuration of PointNet architecture with hyperparameters are shown, which is more efficient and robust with respect to input perturbation and corruption of lidar point clouds.\",\"PeriodicalId\":438341,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Future Networks & Distributed Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Future Networks & Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584202.3584304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584202.3584304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习技术已被证明可以为V2V通信制作交通对象分类系统,以确保交通安全和交通流量预测。探讨了基于MLP和PointNet的鲁棒分类器在激光雷达点云交通目标识别中的应用。介绍了激光雷达传感器的特点、激光雷达点云坐标系统及其创建智能交通目标检测和识别模型的复杂特性。给出了带超参数的PointNet架构的最佳配置,该结构对于激光雷达点云的输入扰动和损坏具有更高的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intellectual lidar-based object classification for V2V communication technology implementation
The deep learning techniques have been shown to make a traffic objects classification system for V2V communications to ensure traffic safety and traffic flow prediction. The robust classifier on the base of MLP and PointNet are explored to recognize the traffic objects from lidar point clouds. The features of a lidar sensor, the lidar point cloud coordinate system and its complex properties for creation a smart traffic object detection and recognition model are described. The best configuration of PointNet architecture with hyperparameters are shown, which is more efficient and robust with respect to input perturbation and corruption of lidar point clouds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXPERIENCE IN USING BIG DATA TECHNOLOGY FOR DIGITALIZATION OF INFORMATION ENSURING THE SMOOTH OPERATION OF PHYSICAL TECHNOLOGY COMPANIES IN DISTRIBUTED ENVIRONMENTS IMPROVING OPTICAL PROPERTIES OF POLYVINYL ALCOHOL (PVA) AND CARBOXYMETHYL CELLULOSE (CMC) AS POLYMER BLEND FILMS (CMC-PVA) A Layered Taxonomy of Internet of Things Attacks Blockchain-based solutions for Cloud Computing Security: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1