Pinterest上的逐项推荐

Stephanie Rogers
{"title":"Pinterest上的逐项推荐","authors":"Stephanie Rogers","doi":"10.1145/2959100.2959130","DOIUrl":null,"url":null,"abstract":"This talk presents Pinterest Related Pins, an item-to-item recommendation system that combines collaborative filtering with content-based ranking to drive a quarter of the total engagement on Pinterest. Signals derived from user curation, the activity of users organizing content, are highly effective when used in conjunction with content based ranking. This will be an in-depth dive into the end-to-end system of Related Pins, a real-world implementation of an item-to-item hybrid recommendation system.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"85 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Item-to-item Recommendations at Pinterest\",\"authors\":\"Stephanie Rogers\",\"doi\":\"10.1145/2959100.2959130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This talk presents Pinterest Related Pins, an item-to-item recommendation system that combines collaborative filtering with content-based ranking to drive a quarter of the total engagement on Pinterest. Signals derived from user curation, the activity of users organizing content, are highly effective when used in conjunction with content based ranking. This will be an in-depth dive into the end-to-end system of Related Pins, a real-world implementation of an item-to-item hybrid recommendation system.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"85 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本次演讲介绍了Pinterest Related Pins,这是一个商品到商品的推荐系统,结合了协同过滤和基于内容的排名,推动了Pinterest总参与度的四分之一。当与基于内容的排名结合使用时,来自用户管理(用户组织内容的活动)的信号非常有效。这篇文章将深入介绍Related Pins的端到端系统,这是一个现实世界中商品对商品混合推荐系统的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Item-to-item Recommendations at Pinterest
This talk presents Pinterest Related Pins, an item-to-item recommendation system that combines collaborative filtering with content-based ranking to drive a quarter of the total engagement on Pinterest. Signals derived from user curation, the activity of users organizing content, are highly effective when used in conjunction with content based ranking. This will be an in-depth dive into the end-to-end system of Related Pins, a real-world implementation of an item-to-item hybrid recommendation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1