自适应图像金字塔表示

V. Cherkashyn, R. Kountchev, D. He, R. Kountcheva
{"title":"自适应图像金字塔表示","authors":"V. Cherkashyn, R. Kountchev, D. He, R. Kountcheva","doi":"10.1109/ISSPIT.2008.4775650","DOIUrl":null,"url":null,"abstract":"New adaptive method for image compression based on pyramid decomposition with neural networks with error back propagation (BPNN) is presented in this paper. The processed image is divided in blocks and then each is compressed in the space of the hidden layers of 3-layer BPNNs, which build the so-called inverse difference pyramid. The results of the new method modeling are compared with these, obtained using the image compression standards JPEG and JPEG2000.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Image Pyramidal Representation\",\"authors\":\"V. Cherkashyn, R. Kountchev, D. He, R. Kountcheva\",\"doi\":\"10.1109/ISSPIT.2008.4775650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New adaptive method for image compression based on pyramid decomposition with neural networks with error back propagation (BPNN) is presented in this paper. The processed image is divided in blocks and then each is compressed in the space of the hidden layers of 3-layer BPNNs, which build the so-called inverse difference pyramid. The results of the new method modeling are compared with these, obtained using the image compression standards JPEG and JPEG2000.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于误差反向传播神经网络的金字塔分解自适应图像压缩方法。处理后的图像被分成块,然后在3层bpnn的隐藏层空间中压缩每个块,从而构建所谓的逆差金字塔。将新方法的建模结果与JPEG和JPEG2000图像压缩标准的建模结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Image Pyramidal Representation
New adaptive method for image compression based on pyramid decomposition with neural networks with error back propagation (BPNN) is presented in this paper. The processed image is divided in blocks and then each is compressed in the space of the hidden layers of 3-layer BPNNs, which build the so-called inverse difference pyramid. The results of the new method modeling are compared with these, obtained using the image compression standards JPEG and JPEG2000.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1