Sebastian J. Schlecht, Leonardo Fierro, V. Välimäki, J. Backman
{"title":"使用同步全通滤波器的音频峰值降低","authors":"Sebastian J. Schlecht, Leonardo Fierro, V. Välimäki, J. Backman","doi":"10.1109/icassp43922.2022.9747877","DOIUrl":null,"url":null,"abstract":"Peak reduction is a common step used in audio playback chains to increase the loudness of a sound. The distortion introduced by a conventional nonlinear compressor can be avoided with the use of an allpass filter, which provides peak reduction by acting on the signal phase. This way, the signal energy around a waveform peak can be smeared while maintaining the total energy of the signal. In this paper, a new technique for linear peak amplitude reduction is proposed based on a Schroeder allpass filter, whose delay line and gain parameters are synced to match peaks of the signal’s auto-correlation function. The proposed method is compared with a previous search method and is shown to be often superior. An evaluation conducted over a variety of test signals indicates that the achieved peak reduction spans from 0 to 5 dB depending on the input waveform. The proposed method is widely applicable to real-time sound reproduction with a minimal computational processing budget.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audio Peak Reduction Using a Synced allpass Filter\",\"authors\":\"Sebastian J. Schlecht, Leonardo Fierro, V. Välimäki, J. Backman\",\"doi\":\"10.1109/icassp43922.2022.9747877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peak reduction is a common step used in audio playback chains to increase the loudness of a sound. The distortion introduced by a conventional nonlinear compressor can be avoided with the use of an allpass filter, which provides peak reduction by acting on the signal phase. This way, the signal energy around a waveform peak can be smeared while maintaining the total energy of the signal. In this paper, a new technique for linear peak amplitude reduction is proposed based on a Schroeder allpass filter, whose delay line and gain parameters are synced to match peaks of the signal’s auto-correlation function. The proposed method is compared with a previous search method and is shown to be often superior. An evaluation conducted over a variety of test signals indicates that the achieved peak reduction spans from 0 to 5 dB depending on the input waveform. The proposed method is widely applicable to real-time sound reproduction with a minimal computational processing budget.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Audio Peak Reduction Using a Synced allpass Filter
Peak reduction is a common step used in audio playback chains to increase the loudness of a sound. The distortion introduced by a conventional nonlinear compressor can be avoided with the use of an allpass filter, which provides peak reduction by acting on the signal phase. This way, the signal energy around a waveform peak can be smeared while maintaining the total energy of the signal. In this paper, a new technique for linear peak amplitude reduction is proposed based on a Schroeder allpass filter, whose delay line and gain parameters are synced to match peaks of the signal’s auto-correlation function. The proposed method is compared with a previous search method and is shown to be often superior. An evaluation conducted over a variety of test signals indicates that the achieved peak reduction spans from 0 to 5 dB depending on the input waveform. The proposed method is widely applicable to real-time sound reproduction with a minimal computational processing budget.