{"title":"线性混合模型中变量选择的经验贝叶斯信息准则","authors":"T. Kubokawa, M. Srivastava","doi":"10.14490/JJSS.40.111","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS\",\"authors\":\"T. Kubokawa, M. Srivastava\",\"doi\":\"10.14490/JJSS.40.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.40.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.40.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS
The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.