{"title":"干细胞染色质多分辨率纹理分析的性能评价","authors":"R. Mangoubi, Mukund Desai, N. Lowry, P. Sammak","doi":"10.1109/ISBI.2008.4541012","DOIUrl":null,"url":null,"abstract":"We apply texture image analysis to automated classification of stem cell nuclei, based on the observation that chromatin in human embryonic stem cells becomes more granular during differentiation. Using known probability models for texture multiresolution decompositions, we derive likelihood ratio test statistics. We also derive the probability density functions of these non-Gaussian statistics and use them to evaluate the performance of the classification test. Results indicate that the test can distinguish with probability 0.95 between nuclei that are pluripotent and those with varying degrees of differentiation. The test recognizes nuclei with similar differentiation level even if prior information says the contrary. This approach should be useful for classifying genome-wide epigenetic changes and chromatin remodeling during human development. Finally, the test statistics and their density functions are applicable to a general texture classification problem.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Performance evaluation of multiresolution texture analysis of stem cell chromatin\",\"authors\":\"R. Mangoubi, Mukund Desai, N. Lowry, P. Sammak\",\"doi\":\"10.1109/ISBI.2008.4541012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply texture image analysis to automated classification of stem cell nuclei, based on the observation that chromatin in human embryonic stem cells becomes more granular during differentiation. Using known probability models for texture multiresolution decompositions, we derive likelihood ratio test statistics. We also derive the probability density functions of these non-Gaussian statistics and use them to evaluate the performance of the classification test. Results indicate that the test can distinguish with probability 0.95 between nuclei that are pluripotent and those with varying degrees of differentiation. The test recognizes nuclei with similar differentiation level even if prior information says the contrary. This approach should be useful for classifying genome-wide epigenetic changes and chromatin remodeling during human development. Finally, the test statistics and their density functions are applicable to a general texture classification problem.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of multiresolution texture analysis of stem cell chromatin
We apply texture image analysis to automated classification of stem cell nuclei, based on the observation that chromatin in human embryonic stem cells becomes more granular during differentiation. Using known probability models for texture multiresolution decompositions, we derive likelihood ratio test statistics. We also derive the probability density functions of these non-Gaussian statistics and use them to evaluate the performance of the classification test. Results indicate that the test can distinguish with probability 0.95 between nuclei that are pluripotent and those with varying degrees of differentiation. The test recognizes nuclei with similar differentiation level even if prior information says the contrary. This approach should be useful for classifying genome-wide epigenetic changes and chromatin remodeling during human development. Finally, the test statistics and their density functions are applicable to a general texture classification problem.