车载边缘云计算:减轻智能汽车车载计算能力的压力

Xin Li, Yifan Dang, Tefang Chen
{"title":"车载边缘云计算:减轻智能汽车车载计算能力的压力","authors":"Xin Li, Yifan Dang, Tefang Chen","doi":"10.1109/ITSC.2018.8569286","DOIUrl":null,"url":null,"abstract":"Recently, with the rapid development of autonomous vehicles and connected vehicles, the demands of vehicular computing keep continuously growing. We notice a constant and limited onboard computational ability can hardly keep up with the rising requirements of the vehicular system and software application during their long-term lifetime, and also at the same time, the vehicles onboard computation causes an increasingly higher vehicular energy consumption. Therefore, we suppose to build a vehicular edge cloud computing (VECC) framework to resolve such a vehicular computing dilemma. In this framework, potential vehicular computing tasks can be executed remotely in an edge cloud within their time latency constraints. Simultaneously, an effective wireless network resources allocation scheme is one of the essential and fundamental factors for the QoS (quality of Service) on the VECC. In this paper, we adopted a stochastic fair allocation (SFA) algorithm to randomly allocate minimum required resource blocks to admitted vehicular users. The numerical results show a great effectiveness of energy efficiency in VECC.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Vehicular Edge Cloud Computing: Depressurize the Intelligent Vehicles Onboard Computational Power\",\"authors\":\"Xin Li, Yifan Dang, Tefang Chen\",\"doi\":\"10.1109/ITSC.2018.8569286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, with the rapid development of autonomous vehicles and connected vehicles, the demands of vehicular computing keep continuously growing. We notice a constant and limited onboard computational ability can hardly keep up with the rising requirements of the vehicular system and software application during their long-term lifetime, and also at the same time, the vehicles onboard computation causes an increasingly higher vehicular energy consumption. Therefore, we suppose to build a vehicular edge cloud computing (VECC) framework to resolve such a vehicular computing dilemma. In this framework, potential vehicular computing tasks can be executed remotely in an edge cloud within their time latency constraints. Simultaneously, an effective wireless network resources allocation scheme is one of the essential and fundamental factors for the QoS (quality of Service) on the VECC. In this paper, we adopted a stochastic fair allocation (SFA) algorithm to randomly allocate minimum required resource blocks to admitted vehicular users. The numerical results show a great effectiveness of energy efficiency in VECC.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

近年来,随着自动驾驶汽车和网联汽车的快速发展,对车载计算的需求不断增长。我们注意到,恒定而有限的车载计算能力很难满足车辆系统和软件在其长期使用寿命期间不断提高的需求,同时车载计算也导致了越来越高的车辆能耗。因此,我们设想构建一个车载边缘云计算(VECC)框架来解决这一车载计算困境。在这个框架中,潜在的车辆计算任务可以在其时间延迟限制内在边缘云中远程执行。同时,有效的无线网络资源分配方案是VECC上实现服务质量(QoS)的关键和基础因素之一。在本文中,我们采用随机公平分配(SFA)算法将最小所需资源块随机分配给允许的车辆用户。数值结果表明,VECC的节能效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vehicular Edge Cloud Computing: Depressurize the Intelligent Vehicles Onboard Computational Power
Recently, with the rapid development of autonomous vehicles and connected vehicles, the demands of vehicular computing keep continuously growing. We notice a constant and limited onboard computational ability can hardly keep up with the rising requirements of the vehicular system and software application during their long-term lifetime, and also at the same time, the vehicles onboard computation causes an increasingly higher vehicular energy consumption. Therefore, we suppose to build a vehicular edge cloud computing (VECC) framework to resolve such a vehicular computing dilemma. In this framework, potential vehicular computing tasks can be executed remotely in an edge cloud within their time latency constraints. Simultaneously, an effective wireless network resources allocation scheme is one of the essential and fundamental factors for the QoS (quality of Service) on the VECC. In this paper, we adopted a stochastic fair allocation (SFA) algorithm to randomly allocate minimum required resource blocks to admitted vehicular users. The numerical results show a great effectiveness of energy efficiency in VECC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Small Satellites and Connected Vehicles for Large-Scale Traffic Monitoring in Road Network Applications of train routing selection methods for real-time railway traffic management To Merge Early or Late: Analysis of Traffic Flow and Energy Impact in a Reduced Lane Scenario Future Mobility Sensing: An Intelligent Mobility Data Collection and Visualization Platform Large Scale Performance Assessment of the Lighthill-Whitham-Richards Model on a Smart Motorway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1