XQsim

Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu, Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, Jang-Hyun Kim
{"title":"XQsim","authors":"Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu, Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, Jang-Hyun Kim","doi":"10.1145/3470496.3527417","DOIUrl":null,"url":null,"abstract":"10+K qubit quantum computer is essential to achieve a true sense of quantum supremacy. With the recent effort towards the large-scale quantum computer, architects have revealed various scalability issues including the constraints in a quantum control processor, which should be holistically analyzed to design a future scalable control processor. However, it has been impossible to identify and resolve the processor's scalability bottleneck due to the absence of a reliable tool to explore an extensive design space including microarchitecture, device technology, and operating temperature. In this paper, we present XQsim, an open-source cross-technology quantum control processor simulator. XQsim can accurately analyze the target control processors' scalability bottlenecks for various device technology and operating temperature candidates. To achieve the goal, we first fully implement a convincing control processor microarchitecture for the Fault-tolerant Quantum Computer (FTQC) systems. Next, on top of the microarchitecture, we develop an architecture-level control processor simulator (XQsim) and thoroughly validate it with post-layout analysis, timing-accurate RTL simulation, and noisy quantum simulation. Lastly, driven by XQsim, we provide the future directions to design a 10+K qubit quantum control processor with several design guidelines and architecture optimizations. Our case study shows that the final control processor architecture can successfully support ~59K qubits with our operating temperature and technology choices.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"XQsim\",\"authors\":\"Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu, Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, Jang-Hyun Kim\",\"doi\":\"10.1145/3470496.3527417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"10+K qubit quantum computer is essential to achieve a true sense of quantum supremacy. With the recent effort towards the large-scale quantum computer, architects have revealed various scalability issues including the constraints in a quantum control processor, which should be holistically analyzed to design a future scalable control processor. However, it has been impossible to identify and resolve the processor's scalability bottleneck due to the absence of a reliable tool to explore an extensive design space including microarchitecture, device technology, and operating temperature. In this paper, we present XQsim, an open-source cross-technology quantum control processor simulator. XQsim can accurately analyze the target control processors' scalability bottlenecks for various device technology and operating temperature candidates. To achieve the goal, we first fully implement a convincing control processor microarchitecture for the Fault-tolerant Quantum Computer (FTQC) systems. Next, on top of the microarchitecture, we develop an architecture-level control processor simulator (XQsim) and thoroughly validate it with post-layout analysis, timing-accurate RTL simulation, and noisy quantum simulation. Lastly, driven by XQsim, we provide the future directions to design a 10+K qubit quantum control processor with several design guidelines and architecture optimizations. Our case study shows that the final control processor architecture can successfully support ~59K qubits with our operating temperature and technology choices.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XQsim
10+K qubit quantum computer is essential to achieve a true sense of quantum supremacy. With the recent effort towards the large-scale quantum computer, architects have revealed various scalability issues including the constraints in a quantum control processor, which should be holistically analyzed to design a future scalable control processor. However, it has been impossible to identify and resolve the processor's scalability bottleneck due to the absence of a reliable tool to explore an extensive design space including microarchitecture, device technology, and operating temperature. In this paper, we present XQsim, an open-source cross-technology quantum control processor simulator. XQsim can accurately analyze the target control processors' scalability bottlenecks for various device technology and operating temperature candidates. To achieve the goal, we first fully implement a convincing control processor microarchitecture for the Fault-tolerant Quantum Computer (FTQC) systems. Next, on top of the microarchitecture, we develop an architecture-level control processor simulator (XQsim) and thoroughly validate it with post-layout analysis, timing-accurate RTL simulation, and noisy quantum simulation. Lastly, driven by XQsim, we provide the future directions to design a 10+K qubit quantum control processor with several design guidelines and architecture optimizations. Our case study shows that the final control processor architecture can successfully support ~59K qubits with our operating temperature and technology choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1