实时无线惯性姿态跟踪的方向滤波算法比较

A. Young
{"title":"实时无线惯性姿态跟踪的方向滤波算法比较","authors":"A. Young","doi":"10.1109/BSN.2009.25","DOIUrl":null,"url":null,"abstract":"Advances in the miniaturisation of inertial sensors have allowed the design of compact wireless inertial orientation trackers. Such devices require data fusion algorithms to process sensor data into estimated orientations. This paper examines the problem of inertial sensor data fusion and compares two alternative methods for orientation estimation: complementary filtering and Kalman filtering. Experiments are presented to assess the performance and accuracy of the resulting filters. The complementary filter structure is demonstrated to require up to nine times less execution time, while maintaining better accuracy across different movement scenarios, than the Kalman filter structure.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Comparison of Orientation Filter Algorithms for Realtime Wireless Inertial Posture Tracking\",\"authors\":\"A. Young\",\"doi\":\"10.1109/BSN.2009.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in the miniaturisation of inertial sensors have allowed the design of compact wireless inertial orientation trackers. Such devices require data fusion algorithms to process sensor data into estimated orientations. This paper examines the problem of inertial sensor data fusion and compares two alternative methods for orientation estimation: complementary filtering and Kalman filtering. Experiments are presented to assess the performance and accuracy of the resulting filters. The complementary filter structure is demonstrated to require up to nine times less execution time, while maintaining better accuracy across different movement scenarios, than the Kalman filter structure.\",\"PeriodicalId\":269861,\"journal\":{\"name\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2009.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

惯性传感器小型化的进展使得设计紧凑型无线惯性方向跟踪器成为可能。这样的设备需要数据融合算法来将传感器数据处理成估计的方向。本文研究了惯性传感器数据融合问题,比较了互补滤波和卡尔曼滤波两种可选的方向估计方法。通过实验来评估所得到的滤波器的性能和精度。与卡尔曼滤波器结构相比,互补滤波器结构所需的执行时间减少了9倍,同时在不同的运动场景中保持了更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Orientation Filter Algorithms for Realtime Wireless Inertial Posture Tracking
Advances in the miniaturisation of inertial sensors have allowed the design of compact wireless inertial orientation trackers. Such devices require data fusion algorithms to process sensor data into estimated orientations. This paper examines the problem of inertial sensor data fusion and compares two alternative methods for orientation estimation: complementary filtering and Kalman filtering. Experiments are presented to assess the performance and accuracy of the resulting filters. The complementary filter structure is demonstrated to require up to nine times less execution time, while maintaining better accuracy across different movement scenarios, than the Kalman filter structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A h-Shirt-Based Body Sensor Network for Cuffless Calibration and Estimation of Arterial Blood Pressure Key Considerations and Experience Using the Ultra Low Power Sensium Platform in Body Sensor Networks Technologies for an Autonomous Wireless Home Healthcare System Transitional Activity Recognition with Manifold Embedding Wireless Propagation and Coexistence of Medical Body Sensor Networks for Ambulatory Patient Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1