{"title":"Xor-Magic图","authors":"J. Siehler","doi":"10.2478/rmm-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract A connected graph on 2n vertices is defined to be xor-magic if the vertices can be labeled with distinct n-bit binary numbers in such a way that the label at each vertex is equal to the bitwise xor of the labels on the adjacent vertices. We show that there is at least one 3-regular xor-magic graph on 2n vertices for every n ⩾ 2. We classify the 3-regular xor-magic graphs on 8 and 16 vertices, and give multiple examples of 3-regular xor-magic graphs on 32 vertices, including the well-known Dyck graph.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Xor-Magic Graphs\",\"authors\":\"J. Siehler\",\"doi\":\"10.2478/rmm-2019-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A connected graph on 2n vertices is defined to be xor-magic if the vertices can be labeled with distinct n-bit binary numbers in such a way that the label at each vertex is equal to the bitwise xor of the labels on the adjacent vertices. We show that there is at least one 3-regular xor-magic graph on 2n vertices for every n ⩾ 2. We classify the 3-regular xor-magic graphs on 8 and 16 vertices, and give multiple examples of 3-regular xor-magic graphs on 32 vertices, including the well-known Dyck graph.\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2019-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2019-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract A connected graph on 2n vertices is defined to be xor-magic if the vertices can be labeled with distinct n-bit binary numbers in such a way that the label at each vertex is equal to the bitwise xor of the labels on the adjacent vertices. We show that there is at least one 3-regular xor-magic graph on 2n vertices for every n ⩾ 2. We classify the 3-regular xor-magic graphs on 8 and 16 vertices, and give multiple examples of 3-regular xor-magic graphs on 32 vertices, including the well-known Dyck graph.