结合金属硬化与波变形和随后的热处理的可能性

A. Kirichek, D. Soloviyov, A. Yashin, S. Silantiev, Anastasia Fonina
{"title":"结合金属硬化与波变形和随后的热处理的可能性","authors":"A. Kirichek, D. Soloviyov, A. Yashin, S. Silantiev, Anastasia Fonina","doi":"10.30987/2782-5957-2022-11-18-23","DOIUrl":null,"url":null,"abstract":"Nowadays, industry development requires making new strengthening technologies that allow expanding the rational scope of their application. It is quite promising to use methods of combined hardening that allow changing the physical and mechanical properties of the surface layer during successive external actions having different physical nature: sequential plastic deformation and external thermal effects. Therefore, the objective of the conducted study is to make a complex technology of combined deformation and thermal hardening. Preliminary plastic deformation is proposed to be carried out by the method of wave deformation hardening, in which the improvement of properties is achieved by forming structural imperfections of the crystal lattice of the material under the action of prolonged shock pulses of significant energy and duration. The use of these pulses contributes to a more complete plastic deformation of the hardened metal and the formation of a deeper hardened surface layer than with traditional methods of deformation hardening. The proposed combined technology, consisting in the use of wave deformation hardening before thermal treatment, allows to obtain high hardness and plasticity in the surface layer, provides an additional resource to increase the operational characteristics of the part. The novelty of the work is in the complex development of a method for combined wave deformation and thermal hardening of the surface layer of alloy steels. The conducted studies of the method have shown the high efficiency of the technology of combined deformation wave and thermal hardening for various grades of alloy steels.","PeriodicalId":289189,"journal":{"name":"Transport engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"POSSIBILITIES OF COMBINED METAL HARDENING WITH WAVE DEFORMATION AND SUBSEQUENT HEAT TREATMENT\",\"authors\":\"A. Kirichek, D. Soloviyov, A. Yashin, S. Silantiev, Anastasia Fonina\",\"doi\":\"10.30987/2782-5957-2022-11-18-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, industry development requires making new strengthening technologies that allow expanding the rational scope of their application. It is quite promising to use methods of combined hardening that allow changing the physical and mechanical properties of the surface layer during successive external actions having different physical nature: sequential plastic deformation and external thermal effects. Therefore, the objective of the conducted study is to make a complex technology of combined deformation and thermal hardening. Preliminary plastic deformation is proposed to be carried out by the method of wave deformation hardening, in which the improvement of properties is achieved by forming structural imperfections of the crystal lattice of the material under the action of prolonged shock pulses of significant energy and duration. The use of these pulses contributes to a more complete plastic deformation of the hardened metal and the formation of a deeper hardened surface layer than with traditional methods of deformation hardening. The proposed combined technology, consisting in the use of wave deformation hardening before thermal treatment, allows to obtain high hardness and plasticity in the surface layer, provides an additional resource to increase the operational characteristics of the part. The novelty of the work is in the complex development of a method for combined wave deformation and thermal hardening of the surface layer of alloy steels. The conducted studies of the method have shown the high efficiency of the technology of combined deformation wave and thermal hardening for various grades of alloy steels.\",\"PeriodicalId\":289189,\"journal\":{\"name\":\"Transport engineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/2782-5957-2022-11-18-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2782-5957-2022-11-18-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,工业发展需要新的强化技术,以扩大其合理的应用范围。使用组合硬化方法,允许在具有不同物理性质的连续外部作用(连续塑性变形和外部热效应)中改变表面层的物理和机械性能,这是非常有前途的。因此,所进行的研究的目的是制造一种复合变形和热硬化技术。提出了采用波变形硬化法进行初步塑性变形的方法,即在能量和持续时间较大的长冲击脉冲作用下,通过形成材料晶格的结构缺陷来改善材料的性能。与传统的变形硬化方法相比,这些脉冲的使用有助于硬化金属的更完全的塑性变形和更深的硬化表面层的形成。提出的组合技术,包括在热处理前使用波动变形硬化,允许在表层获得高硬度和塑性,为增加零件的操作特性提供了额外的资源。这项工作的新颖之处在于对合金钢表面层进行波变形和热硬化相结合的方法的复杂开发。通过对该方法的研究表明,变形波与热硬化相结合的技术对不同牌号的合金钢具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POSSIBILITIES OF COMBINED METAL HARDENING WITH WAVE DEFORMATION AND SUBSEQUENT HEAT TREATMENT
Nowadays, industry development requires making new strengthening technologies that allow expanding the rational scope of their application. It is quite promising to use methods of combined hardening that allow changing the physical and mechanical properties of the surface layer during successive external actions having different physical nature: sequential plastic deformation and external thermal effects. Therefore, the objective of the conducted study is to make a complex technology of combined deformation and thermal hardening. Preliminary plastic deformation is proposed to be carried out by the method of wave deformation hardening, in which the improvement of properties is achieved by forming structural imperfections of the crystal lattice of the material under the action of prolonged shock pulses of significant energy and duration. The use of these pulses contributes to a more complete plastic deformation of the hardened metal and the formation of a deeper hardened surface layer than with traditional methods of deformation hardening. The proposed combined technology, consisting in the use of wave deformation hardening before thermal treatment, allows to obtain high hardness and plasticity in the surface layer, provides an additional resource to increase the operational characteristics of the part. The novelty of the work is in the complex development of a method for combined wave deformation and thermal hardening of the surface layer of alloy steels. The conducted studies of the method have shown the high efficiency of the technology of combined deformation wave and thermal hardening for various grades of alloy steels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEVELOPMENT OF INFORMATIVE PARAMETERS TO DIAGNOSE LASER HARDENING OF TYRES STRUCTURAL SYNTHESIS OF ASSUR EIGHT-BAR CLOSED KINEMATIC CHAINS OF THE FIRST FAMILY MOVABLE LINKS OF THE FOURTH TYPE DETERMINATION OF THE ELEMENTS RESOURCE OF THE CONTACT PAIR ACCORDING TO THEIR WORKING CONDITION THE FRAME STRENGTH FOR THE POWER PLANT AND HYDRAULIC TRANSMISSION OF DR1B DIESEL TRAIN TYPE WEAR RESISTANCE OF COMPOSITE BORATED LAYERS OBTAINED BY HIGH FREQUENCY CURRENT (HFC) HEATING FOR HARDENING ROLLING STOCK PARTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1