$\Delta\sum$力反馈加速度计接口系统的设计方法

Mina Gad, A. Elshennawy, A. Ismail
{"title":"$\\Delta\\sum$力反馈加速度计接口系统的设计方法","authors":"Mina Gad, A. Elshennawy, A. Ismail","doi":"10.1109/newcas49341.2020.9159794","DOIUrl":null,"url":null,"abstract":"Delta-Sigma $(\\Delta\\Sigma)$ technique represents an optimum way for realizing force-feedback electromechanical systems, especially for capacitive sensors. However, when operating the sensor in feedback, the stability of the system becomes a concern, particularly, in $\\Delta\\Sigma$ -based systems, and the higher the order of the system, the harder it becomes to achieve stability. Hence, following a systematic design flow for these systems is essential. While the design of stable electrical $\\Delta\\Sigma$ loops is well established, the design of electromechanical $\\Delta\\Sigma$ loops presents a challenge due to the nature of the capacitive sensor resonator. In this work, a way to stabilize high-order $\\Delta\\Sigma$-based interface systems for inertial capacitive sensors is introduced and a systematic design approach is proposed. The design approach is based on noise transfer function (NTF) matching which translates the system design problem to an NTF design problem as in electrical $\\Delta\\Sigma$ loops. The design approach is applied to the design of a fifth-order $\\Delta\\Sigma$ based interface for a capacitive accelerometer. The sensor has a $0.12 \\ \\mu \\mathrm{g}$ proof-mass, a resonance frequency of 1.8 kHz, a displacement-to-capacitance factor of $3.22 \\ \\text{pF}/ \\mu \\mathrm{m}$ and a feedback factor of $0.7 \\ \\mu \\mathrm{N/V}^{2}$. The designed system achieves a signal-to-quantization noise ratio (SQNR) of 181 dB.","PeriodicalId":135163,"journal":{"name":"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Design Method for $\\\\Delta\\\\sum$ Force-Feedback Accelerometer Interface Systems\",\"authors\":\"Mina Gad, A. Elshennawy, A. Ismail\",\"doi\":\"10.1109/newcas49341.2020.9159794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delta-Sigma $(\\\\Delta\\\\Sigma)$ technique represents an optimum way for realizing force-feedback electromechanical systems, especially for capacitive sensors. However, when operating the sensor in feedback, the stability of the system becomes a concern, particularly, in $\\\\Delta\\\\Sigma$ -based systems, and the higher the order of the system, the harder it becomes to achieve stability. Hence, following a systematic design flow for these systems is essential. While the design of stable electrical $\\\\Delta\\\\Sigma$ loops is well established, the design of electromechanical $\\\\Delta\\\\Sigma$ loops presents a challenge due to the nature of the capacitive sensor resonator. In this work, a way to stabilize high-order $\\\\Delta\\\\Sigma$-based interface systems for inertial capacitive sensors is introduced and a systematic design approach is proposed. The design approach is based on noise transfer function (NTF) matching which translates the system design problem to an NTF design problem as in electrical $\\\\Delta\\\\Sigma$ loops. The design approach is applied to the design of a fifth-order $\\\\Delta\\\\Sigma$ based interface for a capacitive accelerometer. The sensor has a $0.12 \\\\ \\\\mu \\\\mathrm{g}$ proof-mass, a resonance frequency of 1.8 kHz, a displacement-to-capacitance factor of $3.22 \\\\ \\\\text{pF}/ \\\\mu \\\\mathrm{m}$ and a feedback factor of $0.7 \\\\ \\\\mu \\\\mathrm{N/V}^{2}$. The designed system achieves a signal-to-quantization noise ratio (SQNR) of 181 dB.\",\"PeriodicalId\":135163,\"journal\":{\"name\":\"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/newcas49341.2020.9159794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/newcas49341.2020.9159794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Delta-Sigma $(\Delta\Sigma)$技术代表了实现力反馈机电系统的最佳方式,特别是对于电容式传感器。然而,当在反馈中操作传感器时,系统的稳定性成为一个问题,特别是在基于$\Delta\Sigma$的系统中,系统的阶数越高,就越难实现稳定性。因此,遵循这些系统的系统设计流程是必不可少的。虽然稳定电气$\Delta\Sigma$回路的设计已经很好地建立,但由于电容式传感器谐振器的性质,机电$\Delta\Sigma$回路的设计提出了挑战。本文介绍了一种稳定惯性电容传感器高阶$\Delta\Sigma$接口系统的方法,并提出了一种系统的设计方法。设计方法基于噪声传递函数(NTF)匹配,将系统设计问题转化为电气$\Delta\Sigma$回路中的NTF设计问题。将该设计方法应用于电容式加速度计的五阶$\Delta\Sigma$接口设计。该传感器的验证质量为$0.12 \ \mu \mathrm{g}$,谐振频率为1.8 kHz,位移-电容因子为$3.22 \ \text{pF}/ \mu \mathrm{m}$,反馈因子为$0.7 \ \mu \mathrm{N/V}^{2}$。该系统的信量化噪声比(SQNR)为181 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Design Method for $\Delta\sum$ Force-Feedback Accelerometer Interface Systems
Delta-Sigma $(\Delta\Sigma)$ technique represents an optimum way for realizing force-feedback electromechanical systems, especially for capacitive sensors. However, when operating the sensor in feedback, the stability of the system becomes a concern, particularly, in $\Delta\Sigma$ -based systems, and the higher the order of the system, the harder it becomes to achieve stability. Hence, following a systematic design flow for these systems is essential. While the design of stable electrical $\Delta\Sigma$ loops is well established, the design of electromechanical $\Delta\Sigma$ loops presents a challenge due to the nature of the capacitive sensor resonator. In this work, a way to stabilize high-order $\Delta\Sigma$-based interface systems for inertial capacitive sensors is introduced and a systematic design approach is proposed. The design approach is based on noise transfer function (NTF) matching which translates the system design problem to an NTF design problem as in electrical $\Delta\Sigma$ loops. The design approach is applied to the design of a fifth-order $\Delta\Sigma$ based interface for a capacitive accelerometer. The sensor has a $0.12 \ \mu \mathrm{g}$ proof-mass, a resonance frequency of 1.8 kHz, a displacement-to-capacitance factor of $3.22 \ \text{pF}/ \mu \mathrm{m}$ and a feedback factor of $0.7 \ \mu \mathrm{N/V}^{2}$. The designed system achieves a signal-to-quantization noise ratio (SQNR) of 181 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Networks for Epileptic Seizure Prediction: Algorithms and Hardware Implementation Cascaded tunable distributed amplifiers for serial optical links: Some design rules Motor Task Learning in Brain Computer Interfaces using Time-Dependent Regularized Common Spatial Patterns and Residual Networks Towards GaN500-based High Temperature ICs: Characterization and Modeling up to 600°C A Current Reference with high Robustness to Process and Supply Voltage Variations unaffected by Body Effect upon Threshold Voltage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1