{"title":"感应供电脑植入电路的比吸收率","authors":"A. Al-Kalbani, M. Yuce, Jean-Michel Redouté","doi":"10.1109/APEMC.2012.6237866","DOIUrl":null,"url":null,"abstract":"This paper discusses the simulated exposure to a 5 MHz electromagnetic field powering implanted electronic devices using an inductive link. A high efficiency class-E transmitter circuit operating at 5 MHz has been designed. The circuit generates a 1 W to 5 W transmitted power by means of two possible planar primary coil designs, and powers 5 identical implants which are individually equipped with a secondary inductor. Simulations illustrate that a maximum localized SAR level (averaged over 10 g) of 1.16 W/kg is obtained in a rectangular bone structure with a thickness of 10 mm, when the power transmission is equal to 5 W.","PeriodicalId":300639,"journal":{"name":"2012 Asia-Pacific Symposium on Electromagnetic Compatibility","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Specific absorption rate of inductively powered brain implanted circuits\",\"authors\":\"A. Al-Kalbani, M. Yuce, Jean-Michel Redouté\",\"doi\":\"10.1109/APEMC.2012.6237866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the simulated exposure to a 5 MHz electromagnetic field powering implanted electronic devices using an inductive link. A high efficiency class-E transmitter circuit operating at 5 MHz has been designed. The circuit generates a 1 W to 5 W transmitted power by means of two possible planar primary coil designs, and powers 5 identical implants which are individually equipped with a secondary inductor. Simulations illustrate that a maximum localized SAR level (averaged over 10 g) of 1.16 W/kg is obtained in a rectangular bone structure with a thickness of 10 mm, when the power transmission is equal to 5 W.\",\"PeriodicalId\":300639,\"journal\":{\"name\":\"2012 Asia-Pacific Symposium on Electromagnetic Compatibility\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Asia-Pacific Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEMC.2012.6237866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Asia-Pacific Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC.2012.6237866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Specific absorption rate of inductively powered brain implanted circuits
This paper discusses the simulated exposure to a 5 MHz electromagnetic field powering implanted electronic devices using an inductive link. A high efficiency class-E transmitter circuit operating at 5 MHz has been designed. The circuit generates a 1 W to 5 W transmitted power by means of two possible planar primary coil designs, and powers 5 identical implants which are individually equipped with a secondary inductor. Simulations illustrate that a maximum localized SAR level (averaged over 10 g) of 1.16 W/kg is obtained in a rectangular bone structure with a thickness of 10 mm, when the power transmission is equal to 5 W.