基于属性的k -均值算法

Anand Prakash, Y. S. Chungkham, Mohd. Yousuf Ansari
{"title":"基于属性的k -均值算法","authors":"Anand Prakash, Y. S. Chungkham, Mohd. Yousuf Ansari","doi":"10.1109/ICCCIS48478.2019.8974460","DOIUrl":null,"url":null,"abstract":"Clustering is a method to discover hidden natural structure in a dataset of a phenomenon. In this study, we have extended K-Means algorithm for spatiotemporal dataset by introducing attribute-based mass function to calculate center of mass of cluster instead of calculating geometry-based centroid in the dataset. The proposed modification in traditional K-Means algorithm produces more meaningful clusters and converges faster than traditional K-Means. In our study, we have used a real ‘fire dataset’ to conduct experiments on the proposed approach for clustering.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attribute-Based K-Means Algorithm\",\"authors\":\"Anand Prakash, Y. S. Chungkham, Mohd. Yousuf Ansari\",\"doi\":\"10.1109/ICCCIS48478.2019.8974460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a method to discover hidden natural structure in a dataset of a phenomenon. In this study, we have extended K-Means algorithm for spatiotemporal dataset by introducing attribute-based mass function to calculate center of mass of cluster instead of calculating geometry-based centroid in the dataset. The proposed modification in traditional K-Means algorithm produces more meaningful clusters and converges faster than traditional K-Means. In our study, we have used a real ‘fire dataset’ to conduct experiments on the proposed approach for clustering.\",\"PeriodicalId\":436154,\"journal\":{\"name\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS48478.2019.8974460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类是一种在现象的数据集中发现隐藏的自然结构的方法。在本研究中,我们扩展了时空数据集的K-Means算法,引入基于属性的质量函数来计算聚类的质心,而不是在数据集中计算基于几何的质心。该算法对传统K-Means算法进行了改进,产生了更多有意义的聚类,收敛速度也比传统K-Means算法快。在我们的研究中,我们使用了一个真实的“fire数据集”对所提出的聚类方法进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribute-Based K-Means Algorithm
Clustering is a method to discover hidden natural structure in a dataset of a phenomenon. In this study, we have extended K-Means algorithm for spatiotemporal dataset by introducing attribute-based mass function to calculate center of mass of cluster instead of calculating geometry-based centroid in the dataset. The proposed modification in traditional K-Means algorithm produces more meaningful clusters and converges faster than traditional K-Means. In our study, we have used a real ‘fire dataset’ to conduct experiments on the proposed approach for clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Survey on Stress Emotion Recognition in Speech Weak Form Efficiency Of Currency Futures: Evidence From India YouTube Video Classification based on Title and Description Text SegNet-based Corpus Callosum segmentation for brain Magnetic Resonance Images (MRI) A synchronizer-mediator for lazy replicated databases over a decentralized P2P architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1