对JPEG隐写分析的改进

Yassine Yousfi, Jan Butora, J. Fridrich, Clément Fuji Tsang
{"title":"对JPEG隐写分析的改进","authors":"Yassine Yousfi, Jan Butora, J. Fridrich, Clément Fuji Tsang","doi":"10.1145/3437880.3460397","DOIUrl":null,"url":null,"abstract":"In this paper, we study the EfficientNet family pre-trained on ImageNet when used for steganalysis using transfer learning. We show that certain \"surgical modifications\" aimed at maintaining the input resolution in EfficientNet architectures significantly boost their performance in JPEG steganalysis, establishing thus new benchmarks. The modified models are evaluated by their detection accuracy, the number of parameters, the memory consumption, and the total floating point operations (FLOPs) on the ALASKA II dataset. We also show that, surprisingly, EfficientNets in their \"vanilla form\" do not perform as well as the SRNet in BOSSbase+BOWS2. This is because, unlike ALASKA II images, BOSSbase+BOWS2 contains aggressively subsampled images with more complex content. The surgical modifications in EfficientNet remedy this underperformance as well.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Improving EfficientNet for JPEG Steganalysis\",\"authors\":\"Yassine Yousfi, Jan Butora, J. Fridrich, Clément Fuji Tsang\",\"doi\":\"10.1145/3437880.3460397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the EfficientNet family pre-trained on ImageNet when used for steganalysis using transfer learning. We show that certain \\\"surgical modifications\\\" aimed at maintaining the input resolution in EfficientNet architectures significantly boost their performance in JPEG steganalysis, establishing thus new benchmarks. The modified models are evaluated by their detection accuracy, the number of parameters, the memory consumption, and the total floating point operations (FLOPs) on the ALASKA II dataset. We also show that, surprisingly, EfficientNets in their \\\"vanilla form\\\" do not perform as well as the SRNet in BOSSbase+BOWS2. This is because, unlike ALASKA II images, BOSSbase+BOWS2 contains aggressively subsampled images with more complex content. The surgical modifications in EfficientNet remedy this underperformance as well.\",\"PeriodicalId\":120300,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437880.3460397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们研究了在ImageNet上预训练的effentnet家族,当使用迁移学习用于隐写分析时。我们表明,某些“外科手术式修改”旨在保持高效率网络架构中的输入分辨率,显著提高了它们在JPEG隐写分析中的性能,从而建立了新的基准。修改后的模型通过检测精度、参数数量、内存消耗和阿拉斯加II数据集上的总浮点操作(FLOPs)来评估。我们还显示,令人惊讶的是,“普通形式”的效率网的性能不如BOSSbase+BOWS2中的SRNet。这是因为,与ALASKA II图像不同,bosssbase +BOWS2包含具有更复杂内容的积极次采样图像。高效率网络的手术改造也弥补了这一缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving EfficientNet for JPEG Steganalysis
In this paper, we study the EfficientNet family pre-trained on ImageNet when used for steganalysis using transfer learning. We show that certain "surgical modifications" aimed at maintaining the input resolution in EfficientNet architectures significantly boost their performance in JPEG steganalysis, establishing thus new benchmarks. The modified models are evaluated by their detection accuracy, the number of parameters, the memory consumption, and the total floating point operations (FLOPs) on the ALASKA II dataset. We also show that, surprisingly, EfficientNets in their "vanilla form" do not perform as well as the SRNet in BOSSbase+BOWS2. This is because, unlike ALASKA II images, BOSSbase+BOWS2 contains aggressively subsampled images with more complex content. The surgical modifications in EfficientNet remedy this underperformance as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Requirements on Synthetic Fingerprint Images for Biometric Authentication and Forensic Investigations Information Hiding in Cyber Physical Systems: Challenges for Embedding, Retrieval and Detection using Sensor Data of the SWAT Dataset On the Robustness of Backdoor-based Watermarking in Deep Neural Networks Banners: Binarized Neural Networks with Replicated Secret Sharing Meta and Media Data Stream Forensics in the Encrypted Domain of Video Conferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1