香农熵在语音识别中的推广

Nicolas Obin, M. Liuni
{"title":"香农熵在语音识别中的推广","authors":"Nicolas Obin, M. Liuni","doi":"10.1109/SLT.2012.6424204","DOIUrl":null,"url":null,"abstract":"This paper introduces an entropy-based spectral representation as a measure of the degree of noisiness in audio signals, complementary to the standard MFCCs for audio and speech recognition. The proposed representation is based on the Rényi entropy, which is a generalization of the Shannon entropy. In audio signal representation, Rényi entropy presents the advantage of focusing either on the harmonic content (prominent amplitude within a distribution) or on the noise content (equal distribution of amplitudes). The proposed representation outperforms all other noisiness measures - including Shannon and Wiener entropies - in a large-scale classification of vocal effort (whispered-soft/normal/loud-shouted) in the real scenario of multi-language massive role-playing video games. The improvement is around 10% in relative error reduction, and is particularly significant for the recognition of noisy speech - i.e., whispery/breathy speech. This confirms the role of noisiness for speech recognition, and will further be extended to the classification of voice quality for the design of an automatic voice casting system in video games.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On the generalization of Shannon entropy for speech recognition\",\"authors\":\"Nicolas Obin, M. Liuni\",\"doi\":\"10.1109/SLT.2012.6424204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an entropy-based spectral representation as a measure of the degree of noisiness in audio signals, complementary to the standard MFCCs for audio and speech recognition. The proposed representation is based on the Rényi entropy, which is a generalization of the Shannon entropy. In audio signal representation, Rényi entropy presents the advantage of focusing either on the harmonic content (prominent amplitude within a distribution) or on the noise content (equal distribution of amplitudes). The proposed representation outperforms all other noisiness measures - including Shannon and Wiener entropies - in a large-scale classification of vocal effort (whispered-soft/normal/loud-shouted) in the real scenario of multi-language massive role-playing video games. The improvement is around 10% in relative error reduction, and is particularly significant for the recognition of noisy speech - i.e., whispery/breathy speech. This confirms the role of noisiness for speech recognition, and will further be extended to the classification of voice quality for the design of an automatic voice casting system in video games.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文介绍了一种基于熵的频谱表示,作为音频信号噪声程度的度量,补充了音频和语音识别的标准mfc。所提出的表示是基于rsamunyi熵,这是香农熵的推广。在音频信号表示中,r尼米熵的优点是既可以关注谐波内容(分布内的显著振幅),也可以关注噪声内容(振幅的均匀分布)。在多语言大型角色扮演视频游戏的真实场景中,在大规模的声音努力分类(低语-柔和/正常/大声喊叫)中,所提出的表示优于所有其他噪音度量——包括香农和维纳熵。在相对误差减少方面,改进幅度约为10%,对于嘈杂语音的识别尤其显著,例如低语/呼吸语音。这证实了噪声在语音识别中的作用,并将进一步扩展到语音质量分类,用于设计电子游戏中的自动语音分配系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the generalization of Shannon entropy for speech recognition
This paper introduces an entropy-based spectral representation as a measure of the degree of noisiness in audio signals, complementary to the standard MFCCs for audio and speech recognition. The proposed representation is based on the Rényi entropy, which is a generalization of the Shannon entropy. In audio signal representation, Rényi entropy presents the advantage of focusing either on the harmonic content (prominent amplitude within a distribution) or on the noise content (equal distribution of amplitudes). The proposed representation outperforms all other noisiness measures - including Shannon and Wiener entropies - in a large-scale classification of vocal effort (whispered-soft/normal/loud-shouted) in the real scenario of multi-language massive role-playing video games. The improvement is around 10% in relative error reduction, and is particularly significant for the recognition of noisy speech - i.e., whispery/breathy speech. This confirms the role of noisiness for speech recognition, and will further be extended to the classification of voice quality for the design of an automatic voice casting system in video games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1