利用有效应变幅值预测混合三通变应变疲劳寿命

K. Miyoshi, M. Kamaya
{"title":"利用有效应变幅值预测混合三通变应变疲劳寿命","authors":"K. Miyoshi, M. Kamaya","doi":"10.1115/pvp2020-21127","DOIUrl":null,"url":null,"abstract":"\n Mixing flow causes fluid temperature fluctuations near the pipe walls and may result in fatigue crack initiation. The authors have previously reported the loading sequence effect on thermal fatigue in a mixing tee. The fatigue damage around the hot spot, which was heated by the hot jet flow from the branch pipe, obtained by Miner’s rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. In this study, the effect of a single overload on the fatigue crack growth rate was investigated in order to clarify the reduction of the fatigue life at the mixing tee due to strain with periodic overload. In addition, the prediction method of the fatigue life for the variable thermal strain at the mixing tee was discussed. It was shown the crack growth rate increased after an overload for both cases of tensile and compressive overloads. The effective strain amplitude increased after the application of a single overload. The fatigue life curve was modified by considering the increment of the effective strain range. The fatigue damage recalculated using the modified fatigue life curve was larger than 1.0 except in a few cases. The fatigue life could be assessed conservatively for variable strain at the mixing tee using the developed fatigue curve and Miner’s rule.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Life Prediction for Variable Strain at a Mixing Tee by Use of Effective Strain Amplitude\",\"authors\":\"K. Miyoshi, M. Kamaya\",\"doi\":\"10.1115/pvp2020-21127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mixing flow causes fluid temperature fluctuations near the pipe walls and may result in fatigue crack initiation. The authors have previously reported the loading sequence effect on thermal fatigue in a mixing tee. The fatigue damage around the hot spot, which was heated by the hot jet flow from the branch pipe, obtained by Miner’s rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. In this study, the effect of a single overload on the fatigue crack growth rate was investigated in order to clarify the reduction of the fatigue life at the mixing tee due to strain with periodic overload. In addition, the prediction method of the fatigue life for the variable thermal strain at the mixing tee was discussed. It was shown the crack growth rate increased after an overload for both cases of tensile and compressive overloads. The effective strain amplitude increased after the application of a single overload. The fatigue life curve was modified by considering the increment of the effective strain range. The fatigue damage recalculated using the modified fatigue life curve was larger than 1.0 except in a few cases. The fatigue life could be assessed conservatively for variable strain at the mixing tee using the developed fatigue curve and Miner’s rule.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2020-21127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合流动引起管壁附近流体温度波动,可能导致疲劳裂纹萌生。作者以前曾报道过加载顺序对混合三通热疲劳的影响。由分支管热射流加热的热点周围,根据Miner法则得到的疲劳损伤值小于1.0。由于热点周围应变存在周期性过载波形,周期性过载加载顺序导致热点周围疲劳寿命降低。本研究研究了单次过载对疲劳裂纹扩展速率的影响,以阐明周期性过载导致混合三通处疲劳寿命降低的原因。此外,还讨论了混合三通变热应变时疲劳寿命的预测方法。结果表明,在拉伸和压缩过载情况下,裂纹扩展速率都有所增加。单次过载作用后,有效应变幅值增大。考虑有效应变范围的增量,对疲劳寿命曲线进行了修正。采用修正疲劳寿命曲线重新计算的疲劳损伤除少数情况外均大于1.0。利用所建立的疲劳曲线和Miner法则,可以较为保守地评价混合三通处变应变的疲劳寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue Life Prediction for Variable Strain at a Mixing Tee by Use of Effective Strain Amplitude
Mixing flow causes fluid temperature fluctuations near the pipe walls and may result in fatigue crack initiation. The authors have previously reported the loading sequence effect on thermal fatigue in a mixing tee. The fatigue damage around the hot spot, which was heated by the hot jet flow from the branch pipe, obtained by Miner’s rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. In this study, the effect of a single overload on the fatigue crack growth rate was investigated in order to clarify the reduction of the fatigue life at the mixing tee due to strain with periodic overload. In addition, the prediction method of the fatigue life for the variable thermal strain at the mixing tee was discussed. It was shown the crack growth rate increased after an overload for both cases of tensile and compressive overloads. The effective strain amplitude increased after the application of a single overload. The fatigue life curve was modified by considering the increment of the effective strain range. The fatigue damage recalculated using the modified fatigue life curve was larger than 1.0 except in a few cases. The fatigue life could be assessed conservatively for variable strain at the mixing tee using the developed fatigue curve and Miner’s rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors Alternative Design Approach by Finite Element Analysis for High Pressure Equipment A Review of Temperature Reduction Methods in Codes and Standards for Pipe Supports Elephant Foot Buckling Analysis of Large Unanchored Oil Storage Tanks With Tapered Shells Subjected to Foundation Settlement Development of Stress Intensification Factors for Collared Type Piping Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1