M. Andersch, J. Lucas, M. Alvarez-Mesa, B. Juurlink
{"title":"GPU吞吐量微架构中的延迟","authors":"M. Andersch, J. Lucas, M. Alvarez-Mesa, B. Juurlink","doi":"10.1109/ISPASS.2015.7095801","DOIUrl":null,"url":null,"abstract":"Modern GPUs provide massive processing power (arithmetic throughput) as well as memory throughput. Presently, while it appears to be well understood how performance can be improved by increasing throughput, it is less clear what the effects of micro-architectural latencies are on the performance of throughput-oriented GPU architectures. In fact, little is publicly known about the values, behavior, and performance impact of microarchitecture latency components in modern GPUs. This work attempts to fill that gap by analyzing both the idle (static) as well as loaded (dynamic) latency behavior of GPU microarchitectural components. Our results show that GPUs are not as effective in latency hiding as commonly thought and based on that, we argue that latency should also be a GPU design consideration besides throughput.","PeriodicalId":189378,"journal":{"name":"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On latency in GPU throughput microarchitectures\",\"authors\":\"M. Andersch, J. Lucas, M. Alvarez-Mesa, B. Juurlink\",\"doi\":\"10.1109/ISPASS.2015.7095801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern GPUs provide massive processing power (arithmetic throughput) as well as memory throughput. Presently, while it appears to be well understood how performance can be improved by increasing throughput, it is less clear what the effects of micro-architectural latencies are on the performance of throughput-oriented GPU architectures. In fact, little is publicly known about the values, behavior, and performance impact of microarchitecture latency components in modern GPUs. This work attempts to fill that gap by analyzing both the idle (static) as well as loaded (dynamic) latency behavior of GPU microarchitectural components. Our results show that GPUs are not as effective in latency hiding as commonly thought and based on that, we argue that latency should also be a GPU design consideration besides throughput.\",\"PeriodicalId\":189378,\"journal\":{\"name\":\"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2015.7095801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2015.7095801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modern GPUs provide massive processing power (arithmetic throughput) as well as memory throughput. Presently, while it appears to be well understood how performance can be improved by increasing throughput, it is less clear what the effects of micro-architectural latencies are on the performance of throughput-oriented GPU architectures. In fact, little is publicly known about the values, behavior, and performance impact of microarchitecture latency components in modern GPUs. This work attempts to fill that gap by analyzing both the idle (static) as well as loaded (dynamic) latency behavior of GPU microarchitectural components. Our results show that GPUs are not as effective in latency hiding as commonly thought and based on that, we argue that latency should also be a GPU design consideration besides throughput.