基于LAMSTAR神经网络的全陶瓷轴承故障诊断

Jae Yoon, D. He, Bin Qiu
{"title":"基于LAMSTAR神经网络的全陶瓷轴承故障诊断","authors":"Jae Yoon, D. He, Bin Qiu","doi":"10.1109/ICPHM.2013.6621427","DOIUrl":null,"url":null,"abstract":"In this paper, an integrated full ceramic bearing fault diagnostic system developed with acoustic emission (AE) sensors and a large memory storage and retrieval (LAMSTAR) artificial neural network (ANN) is presented. LAMSTAR is a newly developed and US patented neural network algorithm. The performance of the diagnostic system is compared with those implemented with other types of fault classification algorithms using laboratory seeded fault test data. The presented diagnostic system with LAMSTAR network achieved over 93% individual fault detection accuracies along with over 96% overall accuracy.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Full ceramic bearing fault diagnosis using LAMSTAR neural network\",\"authors\":\"Jae Yoon, D. He, Bin Qiu\",\"doi\":\"10.1109/ICPHM.2013.6621427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an integrated full ceramic bearing fault diagnostic system developed with acoustic emission (AE) sensors and a large memory storage and retrieval (LAMSTAR) artificial neural network (ANN) is presented. LAMSTAR is a newly developed and US patented neural network algorithm. The performance of the diagnostic system is compared with those implemented with other types of fault classification algorithms using laboratory seeded fault test data. The presented diagnostic system with LAMSTAR network achieved over 93% individual fault detection accuracies along with over 96% overall accuracy.\",\"PeriodicalId\":178906,\"journal\":{\"name\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2013.6621427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种基于声发射传感器和大内存存储与检索(LAMSTAR)人工神经网络的全陶瓷轴承故障诊断系统。LAMSTAR是一种新开发的神经网络算法,并获得了美国专利。将该诊断系统的性能与其他类型的基于实验室种子故障测试数据的故障分类算法进行了比较。采用LAMSTAR网络的诊断系统实现了93%以上的单个故障检测准确率和96%以上的总体准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full ceramic bearing fault diagnosis using LAMSTAR neural network
In this paper, an integrated full ceramic bearing fault diagnostic system developed with acoustic emission (AE) sensors and a large memory storage and retrieval (LAMSTAR) artificial neural network (ANN) is presented. LAMSTAR is a newly developed and US patented neural network algorithm. The performance of the diagnostic system is compared with those implemented with other types of fault classification algorithms using laboratory seeded fault test data. The presented diagnostic system with LAMSTAR network achieved over 93% individual fault detection accuracies along with over 96% overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1