基于自定义模板组合向云应用程序推荐资源

Ronny Bazan Antequera, P. Calyam, A. Chandrashekara, Shivoam Malhotra
{"title":"基于自定义模板组合向云应用程序推荐资源","authors":"Ronny Bazan Antequera, P. Calyam, A. Chandrashekara, Shivoam Malhotra","doi":"10.1145/3075564.3075582","DOIUrl":null,"url":null,"abstract":"Emerging interdisciplinary data-intensive applications in science and engineering fields (e.g. bioinformatics, cybermanufacturing) demand the use of high-performance computing resources. However, data-intensive applications' local resources usually present limited capacity and availability due to sizable upfront costs. The applications requirements warrant intelligent resource 'abstractions' coupled with 'reusable' approaches to save time and effort in deploying cyberinfrastructure (CI). In this paper, we present a novel 'custom templates' management middleware to overcome this scarcity of resources by use of advanced CI management technologies/protocols to on-demand deploy data-intensive applications across distributed/federated cloud resources. Our middleware comprises of a novel resource recommendation scheme that abstracts user requirements of data-intensive applications and matches them with federated cloud resources using custom templates in a catalog. We evaluate the accuracy of our recommendation scheme in two experiment scenarios. The experiments involve simulating a series of user interactions with diverse applications requirements, also feature a real-world data-intensive application case study. Our experiment results show that our scheme improves the resource recommendation accuracy by up to 21%, compared to the existing schemes.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recommending Resources to Cloud Applications based on Custom Templates Composition\",\"authors\":\"Ronny Bazan Antequera, P. Calyam, A. Chandrashekara, Shivoam Malhotra\",\"doi\":\"10.1145/3075564.3075582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging interdisciplinary data-intensive applications in science and engineering fields (e.g. bioinformatics, cybermanufacturing) demand the use of high-performance computing resources. However, data-intensive applications' local resources usually present limited capacity and availability due to sizable upfront costs. The applications requirements warrant intelligent resource 'abstractions' coupled with 'reusable' approaches to save time and effort in deploying cyberinfrastructure (CI). In this paper, we present a novel 'custom templates' management middleware to overcome this scarcity of resources by use of advanced CI management technologies/protocols to on-demand deploy data-intensive applications across distributed/federated cloud resources. Our middleware comprises of a novel resource recommendation scheme that abstracts user requirements of data-intensive applications and matches them with federated cloud resources using custom templates in a catalog. We evaluate the accuracy of our recommendation scheme in two experiment scenarios. The experiments involve simulating a series of user interactions with diverse applications requirements, also feature a real-world data-intensive application case study. Our experiment results show that our scheme improves the resource recommendation accuracy by up to 21%, compared to the existing schemes.\",\"PeriodicalId\":398898,\"journal\":{\"name\":\"Proceedings of the Computing Frontiers Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Computing Frontiers Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3075564.3075582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

新兴的跨学科数据密集型应用在科学和工程领域(如生物信息学,网络制造)需要使用高性能的计算资源。然而,由于大量的前期成本,数据密集型应用程序的本地资源通常呈现有限的容量和可用性。应用程序的需求保证了智能资源“抽象”与“可重用”方法的结合,以节省部署网络基础设施(CI)的时间和精力。在本文中,我们提出了一种新的“自定义模板”管理中间件,通过使用先进的CI管理技术/协议,在分布式/联合云资源上按需部署数据密集型应用程序,从而克服了资源的稀缺性。我们的中间件包含一个新颖的资源推荐方案,该方案抽象数据密集型应用程序的用户需求,并使用目录中的自定义模板将其与联邦云资源相匹配。我们在两个实验场景中评估了我们的推荐方案的准确性。实验包括模拟一系列具有不同应用程序需求的用户交互,还包括现实世界数据密集型应用程序案例研究。实验结果表明,与现有方案相比,我们的方案将资源推荐准确率提高了21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recommending Resources to Cloud Applications based on Custom Templates Composition
Emerging interdisciplinary data-intensive applications in science and engineering fields (e.g. bioinformatics, cybermanufacturing) demand the use of high-performance computing resources. However, data-intensive applications' local resources usually present limited capacity and availability due to sizable upfront costs. The applications requirements warrant intelligent resource 'abstractions' coupled with 'reusable' approaches to save time and effort in deploying cyberinfrastructure (CI). In this paper, we present a novel 'custom templates' management middleware to overcome this scarcity of resources by use of advanced CI management technologies/protocols to on-demand deploy data-intensive applications across distributed/federated cloud resources. Our middleware comprises of a novel resource recommendation scheme that abstracts user requirements of data-intensive applications and matches them with federated cloud resources using custom templates in a catalog. We evaluate the accuracy of our recommendation scheme in two experiment scenarios. The experiments involve simulating a series of user interactions with diverse applications requirements, also feature a real-world data-intensive application case study. Our experiment results show that our scheme improves the resource recommendation accuracy by up to 21%, compared to the existing schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1