基于定时组件的系统的优化分布式实现

Ahlem Triki, Jacques Combaz, S. Bensalem
{"title":"基于定时组件的系统的优化分布式实现","authors":"Ahlem Triki, Jacques Combaz, S. Bensalem","doi":"10.1109/MEMCOD.2015.7340464","DOIUrl":null,"url":null,"abstract":"Distributed implementation of real-time systems has always been a challenging task. The coordination of components executing on a distributed platform has to be ensured by complex communication protocols taking into account their timing constraints. We propose a novel method for distributed implementation of the application software formally expressed in Behavior, Interaction, Priority (BIP). A BIP model consists of a set of components, subject to timing constraints, and synchronizing through multiparty interactions. The proposed method transforms BIP models into Send/Receive BIP models that operate using asynchronous message passing. Send/Receive BIP models include additional components called schedulers that observe atomic components states. Based on these observations, the schedulers are required to plan as soon as possible the execution of interactions. We propose a method that optimizes the number of observed components, and thus reduces the number of exchanged messages.","PeriodicalId":106851,"journal":{"name":"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimized distributed implementation of timed component-based systems\",\"authors\":\"Ahlem Triki, Jacques Combaz, S. Bensalem\",\"doi\":\"10.1109/MEMCOD.2015.7340464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed implementation of real-time systems has always been a challenging task. The coordination of components executing on a distributed platform has to be ensured by complex communication protocols taking into account their timing constraints. We propose a novel method for distributed implementation of the application software formally expressed in Behavior, Interaction, Priority (BIP). A BIP model consists of a set of components, subject to timing constraints, and synchronizing through multiparty interactions. The proposed method transforms BIP models into Send/Receive BIP models that operate using asynchronous message passing. Send/Receive BIP models include additional components called schedulers that observe atomic components states. Based on these observations, the schedulers are required to plan as soon as possible the execution of interactions. We propose a method that optimizes the number of observed components, and thus reduces the number of exchanged messages.\",\"PeriodicalId\":106851,\"journal\":{\"name\":\"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMCOD.2015.7340464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMCOD.2015.7340464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

实时系统的分布式实现一直是一项具有挑战性的任务。在分布式平台上执行的组件的协调必须通过复杂的通信协议来保证,同时考虑到它们的时间约束。本文提出了一种应用软件分布式实现的新方法,该方法用行为、交互、优先级(BIP)来表示。BIP模型由一组组件组成,受时间约束,并通过多方交互进行同步。该方法将BIP模型转换为使用异步消息传递操作的发送/接收BIP模型。发送/接收BIP模型包括称为调度器的附加组件,用于观察原子组件状态。基于这些观察,调度器需要尽快计划交互的执行。我们提出了一种优化观察组件数量的方法,从而减少了交换消息的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized distributed implementation of timed component-based systems
Distributed implementation of real-time systems has always been a challenging task. The coordination of components executing on a distributed platform has to be ensured by complex communication protocols taking into account their timing constraints. We propose a novel method for distributed implementation of the application software formally expressed in Behavior, Interaction, Priority (BIP). A BIP model consists of a set of components, subject to timing constraints, and synchronizing through multiparty interactions. The proposed method transforms BIP models into Send/Receive BIP models that operate using asynchronous message passing. Send/Receive BIP models include additional components called schedulers that observe atomic components states. Based on these observations, the schedulers are required to plan as soon as possible the execution of interactions. We propose a method that optimizes the number of observed components, and thus reduces the number of exchanged messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient implementation of continuous skyline computation on a multi-core processor Keynote talk I: Syntax-guided synthesis Modeling and verifying context-aware non-monotonic reasoning agents Formal validation and verification of a medical software critical component Modeling resource sharing using FSM-SADF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1