一种获得人工神经网络更好泛化的新方法

B. Kermani, M. White, H. Nagle
{"title":"一种获得人工神经网络更好泛化的新方法","authors":"B. Kermani, M. White, H. Nagle","doi":"10.1109/IEMBS.1994.415352","DOIUrl":null,"url":null,"abstract":"Overtraining is a serious problem in the neural network algorithms, including the backpropagation algorithm. In order to measure the performance of a neural network, ordinarily some of the data is sacrificed and used as a test set (cross-validation method). When the data is very scarce or is expensive, e.g. medical applications such as computer aided diagnosis, this waste of the data becomes intolerable. A new technique is introduced which uses the shape of the training mean squared error graph versus number of epochs and predicts when is the best time (epoch number) to discontinue the training.","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new method in obtaining a better generalization in artificial neural networks\",\"authors\":\"B. Kermani, M. White, H. Nagle\",\"doi\":\"10.1109/IEMBS.1994.415352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overtraining is a serious problem in the neural network algorithms, including the backpropagation algorithm. In order to measure the performance of a neural network, ordinarily some of the data is sacrificed and used as a test set (cross-validation method). When the data is very scarce or is expensive, e.g. medical applications such as computer aided diagnosis, this waste of the data becomes intolerable. A new technique is introduced which uses the shape of the training mean squared error graph versus number of epochs and predicts when is the best time (epoch number) to discontinue the training.\",\"PeriodicalId\":344622,\"journal\":{\"name\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1994.415352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.415352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

过度训练是包括反向传播算法在内的神经网络算法中的一个严重问题。为了测量神经网络的性能,通常会牺牲一些数据并将其用作测试集(交叉验证方法)。当数据非常稀缺或昂贵时,例如计算机辅助诊断等医疗应用,这种数据浪费就变得无法容忍。介绍了一种利用训练均方误差图的形状与历元数的关系来预测何时是停止训练的最佳时间(历元数)的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method in obtaining a better generalization in artificial neural networks
Overtraining is a serious problem in the neural network algorithms, including the backpropagation algorithm. In order to measure the performance of a neural network, ordinarily some of the data is sacrificed and used as a test set (cross-validation method). When the data is very scarce or is expensive, e.g. medical applications such as computer aided diagnosis, this waste of the data becomes intolerable. A new technique is introduced which uses the shape of the training mean squared error graph versus number of epochs and predicts when is the best time (epoch number) to discontinue the training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A portable transcutaneous blood glucose monitoring system using non-invasive collection of suction effusion fluid from skin Early detection of infection and rejection in lung transplantation Temperature controlled electrosurgical vessel sealing Detection of glucose using Raman spectroscopy Fractal analysis for the adherent platelets under flow conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1