用轮廓热管控制仪表设备温度的方法

N.O. Borschev
{"title":"用轮廓热管控制仪表设备温度的方法","authors":"N.O. Borschev","doi":"10.18698/0536-1044-2023-3-110-119","DOIUrl":null,"url":null,"abstract":"The paper considers two ways of maintaining temperature of the instrumentation equipment: using the heat pipes equipped with thermoelectric cooling plate on the compensation cavity and the control valve installed at the outlet of the evaporating radiator. Since the temperature of the contour heat pipe is mainly controlled by the temperature of the compensation cavity positioned behind the evaporator, maintaining the high-precision temperature mode of this device is an urgent task for the entire spacecraft thermal regime. In the first method, the evaporating radiator is heated or cooled depending on the plate device polarity. In the second, the compensation chamber temperature could be changed using the steam supplied to the compensation cavity by a regulator installed at the outlet of the evaporator. Temperature control using a valve is due to the fact that the steam of the working fluid enters the bellows under pressure, which depends on the temperature in the evaporator. Pressure difference between steam and gas causes the bellows to contract and expand, while the valve associated with it partially closes the openings in the housing, through which the steam enters the condenser and the compensation cavity. Detailed description of these devices operation is provided, and thermal hydraulic models of the contour heat pipes equipped with these two devices are compiled.","PeriodicalId":198502,"journal":{"name":"Proceedings of Higher Educational Institutions. Маchine Building","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for controlling temperature of the instrumentation equipment using the contour heat pipe\",\"authors\":\"N.O. Borschev\",\"doi\":\"10.18698/0536-1044-2023-3-110-119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers two ways of maintaining temperature of the instrumentation equipment: using the heat pipes equipped with thermoelectric cooling plate on the compensation cavity and the control valve installed at the outlet of the evaporating radiator. Since the temperature of the contour heat pipe is mainly controlled by the temperature of the compensation cavity positioned behind the evaporator, maintaining the high-precision temperature mode of this device is an urgent task for the entire spacecraft thermal regime. In the first method, the evaporating radiator is heated or cooled depending on the plate device polarity. In the second, the compensation chamber temperature could be changed using the steam supplied to the compensation cavity by a regulator installed at the outlet of the evaporator. Temperature control using a valve is due to the fact that the steam of the working fluid enters the bellows under pressure, which depends on the temperature in the evaporator. Pressure difference between steam and gas causes the bellows to contract and expand, while the valve associated with it partially closes the openings in the housing, through which the steam enters the condenser and the compensation cavity. Detailed description of these devices operation is provided, and thermal hydraulic models of the contour heat pipes equipped with these two devices are compiled.\",\"PeriodicalId\":198502,\"journal\":{\"name\":\"Proceedings of Higher Educational Institutions. Маchine Building\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Higher Educational Institutions. Маchine Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/0536-1044-2023-3-110-119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Higher Educational Institutions. Маchine Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0536-1044-2023-3-110-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了两种维持仪表设备温度的方法:在补偿腔上安装热电冷却板的热管和安装在蒸发散热器出口的控制阀。由于轮廓热管的温度主要由蒸发器后补偿腔的温度控制,因此保持该装置的高精度温度模式是整个航天器热态的紧迫任务。在第一种方法中,根据板器件极性对蒸发散热器进行加热或冷却。在第二种情况下,补偿腔的温度可以通过安装在蒸发器出口的调节器提供给补偿腔的蒸汽来改变。使用阀门控制温度是由于工作流体的蒸汽在压力下进入波纹管,这取决于蒸发器的温度。蒸汽和气体之间的压力差使波纹管收缩和膨胀,而与之相关的阀门部分关闭外壳上的开口,蒸汽通过这些开口进入冷凝器和补偿腔。详细介绍了这两种装置的工作原理,并编制了两种装置所配备的轮廓热管的热工模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for controlling temperature of the instrumentation equipment using the contour heat pipe
The paper considers two ways of maintaining temperature of the instrumentation equipment: using the heat pipes equipped with thermoelectric cooling plate on the compensation cavity and the control valve installed at the outlet of the evaporating radiator. Since the temperature of the contour heat pipe is mainly controlled by the temperature of the compensation cavity positioned behind the evaporator, maintaining the high-precision temperature mode of this device is an urgent task for the entire spacecraft thermal regime. In the first method, the evaporating radiator is heated or cooled depending on the plate device polarity. In the second, the compensation chamber temperature could be changed using the steam supplied to the compensation cavity by a regulator installed at the outlet of the evaporator. Temperature control using a valve is due to the fact that the steam of the working fluid enters the bellows under pressure, which depends on the temperature in the evaporator. Pressure difference between steam and gas causes the bellows to contract and expand, while the valve associated with it partially closes the openings in the housing, through which the steam enters the condenser and the compensation cavity. Detailed description of these devices operation is provided, and thermal hydraulic models of the contour heat pipes equipped with these two devices are compiled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical evaluation of efficiency of a spherical ball gear operating in the multiplier mode Transient processes in an active vibration isolation system with the vibroactive forces inertial compensator Tool and workpiece deformation effect in the cutting speed direction on the machining dynamics Method for calculating parameters of the equidistant toroidal shell of a composite balloon Approximate determination of losses in characteristic velocity and increments in flight altitude of the multistage launch vehicle upper stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1