实时活动轮廓

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900073
Cheng Jin
{"title":"实时活动轮廓","authors":"Cheng Jin","doi":"10.1145/1900008.1900073","DOIUrl":null,"url":null,"abstract":"Active contours represent a widely used segmentation technique. Classical developments often involve great algorithmic complexity, inconveniences with local minima and low convergence to boundary concavities. This paper describes an approach based on a Coarse-to-Fine Normal Neighborhoods strategy (CoFiN2) which leads to lower computational costs, being robust to local minima, and encourages convergence to boundary concavities. This approach is compared with classical methods and is applied on Magnetic Resonance Imaging (MRI) in a real time application.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On real time active contours\",\"authors\":\"Cheng Jin\",\"doi\":\"10.1145/1900008.1900073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active contours represent a widely used segmentation technique. Classical developments often involve great algorithmic complexity, inconveniences with local minima and low convergence to boundary concavities. This paper describes an approach based on a Coarse-to-Fine Normal Neighborhoods strategy (CoFiN2) which leads to lower computational costs, being robust to local minima, and encourages convergence to boundary concavities. This approach is compared with classical methods and is applied on Magnetic Resonance Imaging (MRI) in a real time application.\",\"PeriodicalId\":333104,\"journal\":{\"name\":\"ACM SE '10\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900008.1900073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

活动轮廓是一种应用广泛的分割技术。经典的发展往往涉及很大的算法复杂度,不方便局部极小和低收敛到边界凹。本文描述了一种基于粗到细正规邻域策略(CoFiN2)的方法,该方法具有较低的计算成本,对局部极小值具有鲁棒性,并鼓励收敛到边界凹。将该方法与经典方法进行了比较,并在磁共振成像(MRI)中进行了实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On real time active contours
Active contours represent a widely used segmentation technique. Classical developments often involve great algorithmic complexity, inconveniences with local minima and low convergence to boundary concavities. This paper describes an approach based on a Coarse-to-Fine Normal Neighborhoods strategy (CoFiN2) which leads to lower computational costs, being robust to local minima, and encourages convergence to boundary concavities. This approach is compared with classical methods and is applied on Magnetic Resonance Imaging (MRI) in a real time application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching software engineering using open source software Dynamic ontology version control Visualization of the CreSIS Greenland data sets Java nano patterns: a set of reusable objects Towards power efficient consolidation and distribution of virtual machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1