使用关键字提取的文档聚类

R. Ramachandran, Manjusha K Mohan, Subin K Sara
{"title":"使用关键字提取的文档聚类","authors":"R. Ramachandran, Manjusha K Mohan, Subin K Sara","doi":"10.1109/GCAT55367.2022.9972238","DOIUrl":null,"url":null,"abstract":"Increase in the number of research documents on a daily basis, we find difficulty in identifying proper documents as per our requirements. This paper discusses an effective method in document clustering using automatic keyword extraction. Keyword is the smallest unit that can convey the meaning of an entire page, it helps a user in deciding whether or not to read or skip an article. In this work, we compare different methods of keyword extraction and choose the best method of keyword extraction based on accuracy and precision. The proposed approach takes extracted keywords as input and constructs a variety of different clusters using Euclidean distance measure to group the document together. As a result, a user can conduct a keyword search and obtain the results within seconds. The use of keyword clusters reduces noise in data and consequently enhances cluster quality.","PeriodicalId":133597,"journal":{"name":"2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Document Clustering Using Keyword Extraction\",\"authors\":\"R. Ramachandran, Manjusha K Mohan, Subin K Sara\",\"doi\":\"10.1109/GCAT55367.2022.9972238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increase in the number of research documents on a daily basis, we find difficulty in identifying proper documents as per our requirements. This paper discusses an effective method in document clustering using automatic keyword extraction. Keyword is the smallest unit that can convey the meaning of an entire page, it helps a user in deciding whether or not to read or skip an article. In this work, we compare different methods of keyword extraction and choose the best method of keyword extraction based on accuracy and precision. The proposed approach takes extracted keywords as input and constructs a variety of different clusters using Euclidean distance measure to group the document together. As a result, a user can conduct a keyword search and obtain the results within seconds. The use of keyword clusters reduces noise in data and consequently enhances cluster quality.\",\"PeriodicalId\":133597,\"journal\":{\"name\":\"2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCAT55367.2022.9972238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT55367.2022.9972238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究文件的数量每天都在增加,我们发现很难根据我们的要求确定适当的文件。本文讨论了一种有效的基于自动关键字提取的文档聚类方法。关键词是传达整个页面含义的最小单位,它帮助用户决定是否阅读或跳过一篇文章。在本工作中,我们比较了不同的关键字提取方法,并根据准确度和精密度选择了最佳的关键字提取方法。该方法以提取的关键词为输入,利用欧几里得距离度量构造各种不同的聚类,对文档进行分组。因此,用户可以进行关键字搜索,并在几秒钟内获得结果。关键词聚类的使用减少了数据中的噪声,从而提高了聚类的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Document Clustering Using Keyword Extraction
Increase in the number of research documents on a daily basis, we find difficulty in identifying proper documents as per our requirements. This paper discusses an effective method in document clustering using automatic keyword extraction. Keyword is the smallest unit that can convey the meaning of an entire page, it helps a user in deciding whether or not to read or skip an article. In this work, we compare different methods of keyword extraction and choose the best method of keyword extraction based on accuracy and precision. The proposed approach takes extracted keywords as input and constructs a variety of different clusters using Euclidean distance measure to group the document together. As a result, a user can conduct a keyword search and obtain the results within seconds. The use of keyword clusters reduces noise in data and consequently enhances cluster quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the role of Named Entity Recognition in Question Answering Models Neural Machine Translation for English-Assamese Language Pair using Transformer Cascading Neural Network with Particle Swarm Optimization Combination of APF and SVC for the Power Quality Improvement in Microgrid Distracted Driver Posture Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1