基于模糊推理的地铁供电系统动态风险分析与评估方法

Lili Guo, Wei Dong, Xinya Sun, Xingquan Ji
{"title":"基于模糊推理的地铁供电系统动态风险分析与评估方法","authors":"Lili Guo, Wei Dong, Xinya Sun, Xingquan Ji","doi":"10.1109/SAFEPROCESS45799.2019.9213265","DOIUrl":null,"url":null,"abstract":"Direct current (DC) cable is the main current-carrying component in the DC transmission system. Its operating state is important to the stability of the metro traction power supply system. Once a fault occurs, it will not be able to supply power to the train normally and cause serious consequences. At the same time, its risk mechanism and propagation chain are complex, so it is not easy to analyze. Aiming at such characteristics, this paper proposes a dynamic risk analysis and evaluation method for metro power supply system based on fuzzy reasoning. In this paper, the risk propagation chain model of the subway DC power supply system causing the power supply system to stop power supply is studied, and the fault mechanism of DC cable breakdown is analyzed. The fuzzy probability is used to derive the risk propagation probability, and the graph theory is used to analyze the severity of the risk consequences caused by DC cable breakdown. Finally, a dynamic risk analysis and evaluation method for the DC cable breakdown risk propagation chain of the subway power supply system is established.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method of Dynamic Risk Analysis and Assessment for Metro Power Supply System Based on Fuzzy Reasoning\",\"authors\":\"Lili Guo, Wei Dong, Xinya Sun, Xingquan Ji\",\"doi\":\"10.1109/SAFEPROCESS45799.2019.9213265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct current (DC) cable is the main current-carrying component in the DC transmission system. Its operating state is important to the stability of the metro traction power supply system. Once a fault occurs, it will not be able to supply power to the train normally and cause serious consequences. At the same time, its risk mechanism and propagation chain are complex, so it is not easy to analyze. Aiming at such characteristics, this paper proposes a dynamic risk analysis and evaluation method for metro power supply system based on fuzzy reasoning. In this paper, the risk propagation chain model of the subway DC power supply system causing the power supply system to stop power supply is studied, and the fault mechanism of DC cable breakdown is analyzed. The fuzzy probability is used to derive the risk propagation probability, and the graph theory is used to analyze the severity of the risk consequences caused by DC cable breakdown. Finally, a dynamic risk analysis and evaluation method for the DC cable breakdown risk propagation chain of the subway power supply system is established.\",\"PeriodicalId\":353946,\"journal\":{\"name\":\"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直流电缆是直流输电系统中的主要载流部件。其运行状态对地铁牵引供电系统的稳定运行至关重要。一旦发生故障,将不能正常为列车供电,造成严重后果。同时,其风险机制和传播链复杂,不便于分析。针对这一特点,本文提出了一种基于模糊推理的地铁供电系统动态风险分析与评价方法。本文研究了地铁直流供电系统导致供电系统停止供电的风险传播链模型,分析了直流电缆击穿的故障机理。利用模糊概率推导风险传播概率,利用图论分析直流电缆击穿风险后果的严重程度。最后,建立了地铁供电系统直流电缆击穿风险传播链的动态风险分析与评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method of Dynamic Risk Analysis and Assessment for Metro Power Supply System Based on Fuzzy Reasoning
Direct current (DC) cable is the main current-carrying component in the DC transmission system. Its operating state is important to the stability of the metro traction power supply system. Once a fault occurs, it will not be able to supply power to the train normally and cause serious consequences. At the same time, its risk mechanism and propagation chain are complex, so it is not easy to analyze. Aiming at such characteristics, this paper proposes a dynamic risk analysis and evaluation method for metro power supply system based on fuzzy reasoning. In this paper, the risk propagation chain model of the subway DC power supply system causing the power supply system to stop power supply is studied, and the fault mechanism of DC cable breakdown is analyzed. The fuzzy probability is used to derive the risk propagation probability, and the graph theory is used to analyze the severity of the risk consequences caused by DC cable breakdown. Finally, a dynamic risk analysis and evaluation method for the DC cable breakdown risk propagation chain of the subway power supply system is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Fault Estimation and Fault-tolerant Control of Hypersonic Aircraft Based on Adaptive Observer A Real-Time Anomaly Detection Approach Based on Sparse Distributed Representation Multimode Process Monitoring with Mode Transition Constraints Active Fault-Tolerant Tracking Control of an Unmanned Quadrotor Helicopter under Sensor Faults Cryptanalysis on a (k, n)-Threshold Multiplicative Secret Sharing Scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1