{"title":"用于雷达的光子频率转换技术","authors":"D. Meena, B. K. Kavyashree, B. Harshitha","doi":"10.1109/RAPID.2019.8864233","DOIUrl":null,"url":null,"abstract":"Conventionally, radar systems use bulky mixer stages at different levels for frequency conversions. In this work, we discuss Up/Down conversion methods based on Optical heterodyne principle that reduces the complexity of modern radar systems. The work is supported with typical modeling and experimental analysis results.","PeriodicalId":143675,"journal":{"name":"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic Frequency Conversion Techniques for Radar Applications\",\"authors\":\"D. Meena, B. K. Kavyashree, B. Harshitha\",\"doi\":\"10.1109/RAPID.2019.8864233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventionally, radar systems use bulky mixer stages at different levels for frequency conversions. In this work, we discuss Up/Down conversion methods based on Optical heterodyne principle that reduces the complexity of modern radar systems. The work is supported with typical modeling and experimental analysis results.\",\"PeriodicalId\":143675,\"journal\":{\"name\":\"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAPID.2019.8864233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID.2019.8864233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photonic Frequency Conversion Techniques for Radar Applications
Conventionally, radar systems use bulky mixer stages at different levels for frequency conversions. In this work, we discuss Up/Down conversion methods based on Optical heterodyne principle that reduces the complexity of modern radar systems. The work is supported with typical modeling and experimental analysis results.