一种新的面向可靠性的双目标单元承诺问题

Ali Azizivahed, Sahand Ghavidel, M. J. Ghadi, Li Li, Jiangfeng Zhang
{"title":"一种新的面向可靠性的双目标单元承诺问题","authors":"Ali Azizivahed, Sahand Ghavidel, M. J. Ghadi, Li Li, Jiangfeng Zhang","doi":"10.1109/AUPEC.2017.8282469","DOIUrl":null,"url":null,"abstract":"This paper presents a new solution to unit commitment for single-objective and multi-objective frameworks. In the first step, the total expected energy not supplied (TEENS) is proposed as a separate reliability objective function and at the next step, the multi-objective Pareto front strategy is implemented to simultaneously optimize the cost and reliability objective functions. Additionally, an integer based codification of initial solutions is added to reduce the dimension of ON/OFF status variables and also to eliminate the negative influence of penalty factor. The modified invasive weed optimization (MIWO) algorithm is also developed to optimally solve the proposed problem. The obtained solutions are compared with results in the literature which confirms the applicability and superiority of the proposed algorithm for a 10-unit system and 24-hour scheduling horizon.","PeriodicalId":155608,"journal":{"name":"2017 Australasian Universities Power Engineering Conference (AUPEC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel reliability oriented bi-objective unit commitment problem\",\"authors\":\"Ali Azizivahed, Sahand Ghavidel, M. J. Ghadi, Li Li, Jiangfeng Zhang\",\"doi\":\"10.1109/AUPEC.2017.8282469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new solution to unit commitment for single-objective and multi-objective frameworks. In the first step, the total expected energy not supplied (TEENS) is proposed as a separate reliability objective function and at the next step, the multi-objective Pareto front strategy is implemented to simultaneously optimize the cost and reliability objective functions. Additionally, an integer based codification of initial solutions is added to reduce the dimension of ON/OFF status variables and also to eliminate the negative influence of penalty factor. The modified invasive weed optimization (MIWO) algorithm is also developed to optimally solve the proposed problem. The obtained solutions are compared with results in the literature which confirms the applicability and superiority of the proposed algorithm for a 10-unit system and 24-hour scheduling horizon.\",\"PeriodicalId\":155608,\"journal\":{\"name\":\"2017 Australasian Universities Power Engineering Conference (AUPEC)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australasian Universities Power Engineering Conference (AUPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUPEC.2017.8282469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2017.8282469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对单目标和多目标框架,提出了一种新的单元承诺求解方法。首先将总期望不供给能量(TEENS)作为独立的可靠性目标函数,然后采用多目标Pareto前策略对成本和可靠性目标函数进行同步优化。此外,还增加了基于整数的初始解编码,以减少开/关状态变量的维数,并消除惩罚因子的负面影响。为了最优地解决所提出的问题,提出了改进的入侵杂草优化算法(MIWO)。将所得到的解与文献结果进行了比较,证实了所提算法对10单元系统和24小时调度视界的适用性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel reliability oriented bi-objective unit commitment problem
This paper presents a new solution to unit commitment for single-objective and multi-objective frameworks. In the first step, the total expected energy not supplied (TEENS) is proposed as a separate reliability objective function and at the next step, the multi-objective Pareto front strategy is implemented to simultaneously optimize the cost and reliability objective functions. Additionally, an integer based codification of initial solutions is added to reduce the dimension of ON/OFF status variables and also to eliminate the negative influence of penalty factor. The modified invasive weed optimization (MIWO) algorithm is also developed to optimally solve the proposed problem. The obtained solutions are compared with results in the literature which confirms the applicability and superiority of the proposed algorithm for a 10-unit system and 24-hour scheduling horizon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of automatic hyperparameter tuning for residential load forecasting via deep learning Hybrid power plant bidding strategy including a commercial compressed air energy storage aggregator and a wind power producer Modeling of multi-junction solar cells for maximum power point tracking to improve the conversion efficiency The importance of lightning education and a lightning protection risk assessment to reduce fatalities Recent advances in common mode voltage mitigation techniques based on MPC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1