PM10和PM2.5日浓度预测的多输入多输出新模糊神经网络

M. Terziyska, Zhelyazko Terziyski, S. Hadzhikoleva, E. Hadzhikolev
{"title":"PM10和PM2.5日浓度预测的多输入多输出新模糊神经网络","authors":"M. Terziyska, Zhelyazko Terziyski, S. Hadzhikoleva, E. Hadzhikolev","doi":"10.1109/BdKCSE48644.2019.9010610","DOIUrl":null,"url":null,"abstract":"Multi-Input Multi-Output Neo-Fuzzy Neural Network Structure, based on Neo-fuzzy neuron concept, is used in this study to forecast average daily PM10 and PM2.5 concentration in Plovdiv, Bulgaria. Such a structure is preferred because it has a good generalization capability, high-speed learning, and low computational efforts and guarantee the convergence with the global minimum. The data set used in the present study comprises temperature, humidity, atmospheric pressure, PM10 and PM2.5 daily average concentrations from all 60 monitoring stations located in the city.","PeriodicalId":206080,"journal":{"name":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-input Multi-output Neo-Fuzzy Neural Network for PM10 and PM2.5 Daily Concentrations Forecasting\",\"authors\":\"M. Terziyska, Zhelyazko Terziyski, S. Hadzhikoleva, E. Hadzhikolev\",\"doi\":\"10.1109/BdKCSE48644.2019.9010610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Input Multi-Output Neo-Fuzzy Neural Network Structure, based on Neo-fuzzy neuron concept, is used in this study to forecast average daily PM10 and PM2.5 concentration in Plovdiv, Bulgaria. Such a structure is preferred because it has a good generalization capability, high-speed learning, and low computational efforts and guarantee the convergence with the global minimum. The data set used in the present study comprises temperature, humidity, atmospheric pressure, PM10 and PM2.5 daily average concentrations from all 60 monitoring stations located in the city.\",\"PeriodicalId\":206080,\"journal\":{\"name\":\"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BdKCSE48644.2019.9010610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BdKCSE48644.2019.9010610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用基于新模糊神经元概念的多输入多输出新模糊神经网络结构对保加利亚普罗夫迪夫市PM10和PM2.5的日平均浓度进行预测。这种结构具有良好的泛化能力,学习速度快,计算量小,保证收敛到全局最小值的优点,是首选结构。本研究中使用的数据集包括位于该市的所有60个监测站的温度、湿度、大气压、PM10和PM2.5的日平均浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-input Multi-output Neo-Fuzzy Neural Network for PM10 and PM2.5 Daily Concentrations Forecasting
Multi-Input Multi-Output Neo-Fuzzy Neural Network Structure, based on Neo-fuzzy neuron concept, is used in this study to forecast average daily PM10 and PM2.5 concentration in Plovdiv, Bulgaria. Such a structure is preferred because it has a good generalization capability, high-speed learning, and low computational efforts and guarantee the convergence with the global minimum. The data set used in the present study comprises temperature, humidity, atmospheric pressure, PM10 and PM2.5 daily average concentrations from all 60 monitoring stations located in the city.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting the Spot Price of P1A Shipping Route Building Lepida ScpA BigData Infrastructure Knowledge Based Modelling of Complex Interconnected Systems Using Big Data for Data Leak Prevention Analysis of the Functionalities of a Shared ICS Security Operations Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1