短期电价预测的人工神经网络方法

J. Catalão, S. Mariano, V. Mendes, L. Ferreira
{"title":"短期电价预测的人工神经网络方法","authors":"J. Catalão, S. Mariano, V. Mendes, L. Ferreira","doi":"10.1109/ISAP.2007.4441655","DOIUrl":null,"url":null,"abstract":"This paper presents an artificial neural network approach for short-term electricity prices forecasting. In the new deregulated framework, producers and consumers require short-term price forecasting to derive their bidding strategies to the electricity market. Accurate forecasting tools are required for producers to maximize their profits and for consumers to maximize their utilities. A three-layered feedforward artificial neural network, trained by the Levenberg-Marquardt algorithm, is used for forecasting the next 168 hour electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed approach, reporting the numerical results from a real-world case study based on an electricity market.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"An Artificial Neural Network Approach for Short-Term Electricity Prices Forecasting\",\"authors\":\"J. Catalão, S. Mariano, V. Mendes, L. Ferreira\",\"doi\":\"10.1109/ISAP.2007.4441655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an artificial neural network approach for short-term electricity prices forecasting. In the new deregulated framework, producers and consumers require short-term price forecasting to derive their bidding strategies to the electricity market. Accurate forecasting tools are required for producers to maximize their profits and for consumers to maximize their utilities. A three-layered feedforward artificial neural network, trained by the Levenberg-Marquardt algorithm, is used for forecasting the next 168 hour electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed approach, reporting the numerical results from a real-world case study based on an electricity market.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种用于短期电价预测的人工神经网络方法。在放松管制的新框架下,生产者和消费者需要短期价格预测,以获得他们在电力市场上的投标策略。生产者要实现利润最大化,消费者要实现效用最大化,都需要准确的预测工具。一个由Levenberg-Marquardt算法训练的三层前馈人工神经网络被用于预测未来168小时的电价。我们评估了使用所提出的方法所获得的价格预测的准确性,并报告了基于电力市场的真实案例研究的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Artificial Neural Network Approach for Short-Term Electricity Prices Forecasting
This paper presents an artificial neural network approach for short-term electricity prices forecasting. In the new deregulated framework, producers and consumers require short-term price forecasting to derive their bidding strategies to the electricity market. Accurate forecasting tools are required for producers to maximize their profits and for consumers to maximize their utilities. A three-layered feedforward artificial neural network, trained by the Levenberg-Marquardt algorithm, is used for forecasting the next 168 hour electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed approach, reporting the numerical results from a real-world case study based on an electricity market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1