一种新的基于视觉的果园农业移动机器人导航行引导方法

M. Sharifi, Xiaoqi Chen
{"title":"一种新的基于视觉的果园农业移动机器人导航行引导方法","authors":"M. Sharifi, Xiaoqi Chen","doi":"10.1109/ICARA.2015.7081155","DOIUrl":null,"url":null,"abstract":"This paper presents a novel vision based technique for navigation of agricultural mobile robots in orchards. In this technique, the captured color image is clustered by mean-shift algorithm, then a novel classification technique based on graph partitioning theory classifies clustered image into defined classes including terrain, trees and sky. Then, Hough transform is applied to extract the features required to define desired central path for robot navigation in orchard rows. Finally using this technique, mobile robot can change and improve its direction with respect to desired path. The results show this technique classifies an orchard image properly into defined elements and produces optimal path for mobile robot.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A novel vision based row guidance approach for navigation of agricultural mobile robots in orchards\",\"authors\":\"M. Sharifi, Xiaoqi Chen\",\"doi\":\"10.1109/ICARA.2015.7081155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel vision based technique for navigation of agricultural mobile robots in orchards. In this technique, the captured color image is clustered by mean-shift algorithm, then a novel classification technique based on graph partitioning theory classifies clustered image into defined classes including terrain, trees and sky. Then, Hough transform is applied to extract the features required to define desired central path for robot navigation in orchard rows. Finally using this technique, mobile robot can change and improve its direction with respect to desired path. The results show this technique classifies an orchard image properly into defined elements and produces optimal path for mobile robot.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

提出了一种新的基于视觉的果园农业移动机器人导航技术。该方法首先采用mean-shift算法对采集的彩色图像进行聚类,然后基于图划分理论对聚类后的图像进行分类,包括地形、树木和天空。然后,应用霍夫变换提取特征,以定义机器人在果园行中导航所需的中心路径。最后,利用该技术,移动机器人可以相对于期望路径改变和改进其方向。实验结果表明,该方法能够正确地将果园图像划分为定义元素,并为移动机器人生成最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel vision based row guidance approach for navigation of agricultural mobile robots in orchards
This paper presents a novel vision based technique for navigation of agricultural mobile robots in orchards. In this technique, the captured color image is clustered by mean-shift algorithm, then a novel classification technique based on graph partitioning theory classifies clustered image into defined classes including terrain, trees and sky. Then, Hough transform is applied to extract the features required to define desired central path for robot navigation in orchard rows. Finally using this technique, mobile robot can change and improve its direction with respect to desired path. The results show this technique classifies an orchard image properly into defined elements and produces optimal path for mobile robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated weighing by sequential inference in dynamic environments Implementing a HARMS-based software system for use in collective robotics applications Concepts and simulations of a soft robot mimicking human tongue Application of Inverse Simulation to a wheeled mobile robot Design and experimental testing of vehicle-following control for small electric vehicles with communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1