{"title":"Si, SiC和GaN功率器件:对关键性能指标的公正看法","authors":"G. Deboy, M. Treu, O. Haeberlen, D. Neumayr","doi":"10.1109/IEDM.2016.7838458","DOIUrl":null,"url":null,"abstract":"This paper discusses key parameters such as capacitances & switching losses for silicon, SiC and GaN power devices with respect to applications in switch mode power supplies. Whereas wide bandgap devices deliver roughly one order of magnitude lower charges stored in the output capacitance, the energy equivalent is nearly on par with latest generation super junction devices. Silicon devices will hence prevail in classic hard switching applications at moderate switching frequencies whereas SiC and GaN based power devices will play to their full benefits in resonant topologies at moderate to high switching frequencies.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Si, SiC and GaN power devices: An unbiased view on key performance indicators\",\"authors\":\"G. Deboy, M. Treu, O. Haeberlen, D. Neumayr\",\"doi\":\"10.1109/IEDM.2016.7838458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses key parameters such as capacitances & switching losses for silicon, SiC and GaN power devices with respect to applications in switch mode power supplies. Whereas wide bandgap devices deliver roughly one order of magnitude lower charges stored in the output capacitance, the energy equivalent is nearly on par with latest generation super junction devices. Silicon devices will hence prevail in classic hard switching applications at moderate switching frequencies whereas SiC and GaN based power devices will play to their full benefits in resonant topologies at moderate to high switching frequencies.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Si, SiC and GaN power devices: An unbiased view on key performance indicators
This paper discusses key parameters such as capacitances & switching losses for silicon, SiC and GaN power devices with respect to applications in switch mode power supplies. Whereas wide bandgap devices deliver roughly one order of magnitude lower charges stored in the output capacitance, the energy equivalent is nearly on par with latest generation super junction devices. Silicon devices will hence prevail in classic hard switching applications at moderate switching frequencies whereas SiC and GaN based power devices will play to their full benefits in resonant topologies at moderate to high switching frequencies.