T-PPA:一种基于TEE的高效可审计的保护隐私的去中心化支付系统

Suozai Li, Ming-jun Huang, Qinghao Wang, Yongxin Zhang, Ning Lu, Wenbo Shi, Hong Lei
{"title":"T-PPA:一种基于TEE的高效可审计的保护隐私的去中心化支付系统","authors":"Suozai Li, Ming-jun Huang, Qinghao Wang, Yongxin Zhang, Ning Lu, Wenbo Shi, Hong Lei","doi":"10.1109/ICCC56324.2022.10065866","DOIUrl":null,"url":null,"abstract":"Cryptocurrencies such as Bitcoin and Ethereum achieve decentralized payment by maintaining a globally distributed and append-only ledger. Recently, several researchers have sought to achieve privacy-preserving auditing, which is a crucial function for scenarios that require regulatory compliance, for decentralized payment systems. However, those proposed schemes usually cost much time for the cooperation between the auditor and the user due to leveraging complex cryptographic tools such as zero-knowledge proof. To tackle the problem, we present T-PPA, a privacy-preserving decentralized payment system, which provides customizable and efficient auditability by leveraging trusted execution environments (TEEs). T-PPA demands the auditor construct audit programs based on request and execute them in the TEE to protect the privacy of transactions. Then, identity-based encryption (IBE) is employed to construct the separation of power between the agency nodes and the auditor and to protect the privacy of transactions out of TEE. The experimental results show that T-PPA can achieve privacy-preserving audits with acceptable overhead.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T-PPA: A Privacy-Preserving Decentralized Payment System with Efficient Auditability Based on TEE\",\"authors\":\"Suozai Li, Ming-jun Huang, Qinghao Wang, Yongxin Zhang, Ning Lu, Wenbo Shi, Hong Lei\",\"doi\":\"10.1109/ICCC56324.2022.10065866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptocurrencies such as Bitcoin and Ethereum achieve decentralized payment by maintaining a globally distributed and append-only ledger. Recently, several researchers have sought to achieve privacy-preserving auditing, which is a crucial function for scenarios that require regulatory compliance, for decentralized payment systems. However, those proposed schemes usually cost much time for the cooperation between the auditor and the user due to leveraging complex cryptographic tools such as zero-knowledge proof. To tackle the problem, we present T-PPA, a privacy-preserving decentralized payment system, which provides customizable and efficient auditability by leveraging trusted execution environments (TEEs). T-PPA demands the auditor construct audit programs based on request and execute them in the TEE to protect the privacy of transactions. Then, identity-based encryption (IBE) is employed to construct the separation of power between the agency nodes and the auditor and to protect the privacy of transactions out of TEE. The experimental results show that T-PPA can achieve privacy-preserving audits with acceptable overhead.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10065866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

比特币和以太坊等加密货币通过维护全球分布式和仅追加的分类账来实现去中心化支付。最近,一些研究人员试图实现保护隐私的审计,这是分散支付系统中需要遵守监管规定的关键功能。然而,由于使用了复杂的加密工具(如零知识证明),这些方案通常需要审计员和用户之间的合作花费大量时间。为了解决这个问题,我们提出了T-PPA,这是一种保护隐私的分散支付系统,它通过利用可信执行环境(tee)提供可定制和高效的可审计性。T-PPA要求审计人员根据请求构建审计程序并在TEE中执行,以保护交易的隐私。然后,采用基于身份的加密(IBE)来构建代理节点与审计员之间的权力分离,并保护TEE外交易的隐私性。实验结果表明,T-PPA可以在可接受的开销下实现隐私保护审计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T-PPA: A Privacy-Preserving Decentralized Payment System with Efficient Auditability Based on TEE
Cryptocurrencies such as Bitcoin and Ethereum achieve decentralized payment by maintaining a globally distributed and append-only ledger. Recently, several researchers have sought to achieve privacy-preserving auditing, which is a crucial function for scenarios that require regulatory compliance, for decentralized payment systems. However, those proposed schemes usually cost much time for the cooperation between the auditor and the user due to leveraging complex cryptographic tools such as zero-knowledge proof. To tackle the problem, we present T-PPA, a privacy-preserving decentralized payment system, which provides customizable and efficient auditability by leveraging trusted execution environments (TEEs). T-PPA demands the auditor construct audit programs based on request and execute them in the TEE to protect the privacy of transactions. Then, identity-based encryption (IBE) is employed to construct the separation of power between the agency nodes and the auditor and to protect the privacy of transactions out of TEE. The experimental results show that T-PPA can achieve privacy-preserving audits with acceptable overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backward Edge Pointer Protection Technology Based on Dynamic Instrumentation Experimental Design of Router Debugging based Neighbor Cache States Change of IPv6 Nodes Sharing Big Data Storage for Air Traffic Management Study of Non-Orthogonal Multiple Access Technology for Satellite Communications A Joint Design of Polar Codes and Physical-layer Network Coding in Visible Light Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1