启用无主动式接收器的被动反向散射标签定位

A. Ahmad, Xiao Sha, M. Stanaćević, A. Athalye, P. Djurić, Samir R Das
{"title":"启用无主动式接收器的被动反向散射标签定位","authors":"A. Ahmad, Xiao Sha, M. Stanaćević, A. Athalye, P. Djurić, Samir R Das","doi":"10.1145/3485730.3485950","DOIUrl":null,"url":null,"abstract":"Backscattering tags transmit passively without an on-board active radio transmitter. Almost all present-day backscatter systems, however, rely on active radio receivers. This presents a significant scalability, power and cost challenge for backscatter systems. To overcome this barrier, recent research has empowered these passive tags with the ability to reliably receive backscatter signals from other tags. This forms the building block of passive networks wherein tags talk to each other without an active radio on either the transmit or receive side. For wider functionality, accurate localization of such tags is critical. All known backscatter tag localization techniques rely on active receivers for measuring and characterizing the received signal. As a result, they cannot be directly applied to passive tag-to-tag networks. This paper overcomes the gap by developing a localization technique for such passive networks based on a novel method for phase-based ranging in passive receivers. This method allows pairs of passive tags to collaboratively determine the inter-tag channel phase while effectively minimizing the effects of multipath and noise in the surrounding environment. Building on this, we develop a localization technique that benefits from large link diversity uniquely available in a passive tag-to-tag network. We evaluate the performance of our techniques with extensive micro-benchmarking experiments in an indoor environment using fabricated prototypes of tag hardware. We show that our phase-based ranging performs similar to active receivers, providing median 1D ranging error <1 cm and median localization error also <1 cm. Benefiting from the large-scale link diversity our localization technique outperforms several state-of-the-art techniques that use active receivers.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enabling Passive Backscatter Tag Localization Without Active Receivers\",\"authors\":\"A. Ahmad, Xiao Sha, M. Stanaćević, A. Athalye, P. Djurić, Samir R Das\",\"doi\":\"10.1145/3485730.3485950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backscattering tags transmit passively without an on-board active radio transmitter. Almost all present-day backscatter systems, however, rely on active radio receivers. This presents a significant scalability, power and cost challenge for backscatter systems. To overcome this barrier, recent research has empowered these passive tags with the ability to reliably receive backscatter signals from other tags. This forms the building block of passive networks wherein tags talk to each other without an active radio on either the transmit or receive side. For wider functionality, accurate localization of such tags is critical. All known backscatter tag localization techniques rely on active receivers for measuring and characterizing the received signal. As a result, they cannot be directly applied to passive tag-to-tag networks. This paper overcomes the gap by developing a localization technique for such passive networks based on a novel method for phase-based ranging in passive receivers. This method allows pairs of passive tags to collaboratively determine the inter-tag channel phase while effectively minimizing the effects of multipath and noise in the surrounding environment. Building on this, we develop a localization technique that benefits from large link diversity uniquely available in a passive tag-to-tag network. We evaluate the performance of our techniques with extensive micro-benchmarking experiments in an indoor environment using fabricated prototypes of tag hardware. We show that our phase-based ranging performs similar to active receivers, providing median 1D ranging error <1 cm and median localization error also <1 cm. Benefiting from the large-scale link diversity our localization technique outperforms several state-of-the-art techniques that use active receivers.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3485950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3485950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

后向散射标签在没有机载主动无线电发射器的情况下进行被动传输。然而,目前几乎所有的后向散射系统都依赖于有源无线电接收机。这对后向散射系统的可扩展性、功耗和成本提出了重大挑战。为了克服这一障碍,最近的研究使这些无源标签能够可靠地接收来自其他标签的反向散射信号。这构成了无源网络的基石,在无源网络中,标签可以在没有主动无线电的情况下在发送端或接收端相互通信。对于更广泛的功能,这些标签的准确定位是至关重要的。所有已知的后向散射标签定位技术都依赖于有源接收器来测量和表征接收到的信号。因此,它们不能直接应用于被动标签到标签网络。本文提出了一种基于无源接收机相位测距新方法的无源网络定位技术,克服了这一缺陷。该方法允许对被动标签协同确定标签间信道相位,同时有效地减少周围环境中的多径和噪声的影响。在此基础上,我们开发了一种定位技术,该技术受益于被动标签到标签网络中唯一可用的大链路多样性。我们通过在室内环境中使用制造的标签硬件原型进行广泛的微基准测试实验来评估我们的技术的性能。我们的研究表明,基于相位的测距性能与有源接收机相似,提供的中位1D测距误差<1 cm,中位定位误差也<1 cm。得益于大规模的链路多样性,我们的定位技术优于使用有源接收器的几种最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling Passive Backscatter Tag Localization Without Active Receivers
Backscattering tags transmit passively without an on-board active radio transmitter. Almost all present-day backscatter systems, however, rely on active radio receivers. This presents a significant scalability, power and cost challenge for backscatter systems. To overcome this barrier, recent research has empowered these passive tags with the ability to reliably receive backscatter signals from other tags. This forms the building block of passive networks wherein tags talk to each other without an active radio on either the transmit or receive side. For wider functionality, accurate localization of such tags is critical. All known backscatter tag localization techniques rely on active receivers for measuring and characterizing the received signal. As a result, they cannot be directly applied to passive tag-to-tag networks. This paper overcomes the gap by developing a localization technique for such passive networks based on a novel method for phase-based ranging in passive receivers. This method allows pairs of passive tags to collaboratively determine the inter-tag channel phase while effectively minimizing the effects of multipath and noise in the surrounding environment. Building on this, we develop a localization technique that benefits from large link diversity uniquely available in a passive tag-to-tag network. We evaluate the performance of our techniques with extensive micro-benchmarking experiments in an indoor environment using fabricated prototypes of tag hardware. We show that our phase-based ranging performs similar to active receivers, providing median 1D ranging error <1 cm and median localization error also <1 cm. Benefiting from the large-scale link diversity our localization technique outperforms several state-of-the-art techniques that use active receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1