Zhengchen Zhang, Fuxiang Wu, Chenyu Yang, M. Dong, Fu-qiu Zhou
{"title":"基于句法树的汉语韵律短语预测","authors":"Zhengchen Zhang, Fuxiang Wu, Chenyu Yang, M. Dong, Fu-qiu Zhou","doi":"10.21437/SSW.2016-26","DOIUrl":null,"url":null,"abstract":"Prosodic phrases (PPs) are important for Mandarin Text-To-Speech systems. Most of the existing PP detection methods need large manually annotated corpora to learn the models. In this paper, we propose a rule based method to predict the PP boundaries employing the syntactic information of a sentence. The method is based on the ob-servation that a prosodic phrase is a meaningful segment of a sentence with length restrictions. A syntactic structure allows to segment a sentence according to grammars. We add some length restrictions to the segmentations to predict the PP boundaries. An F-Score of 0.693 was obtained in the experiments, which is about 0.02 higher than the one got by a Conditional Random Field based method.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mandarin Prosodic Phrase Prediction based on Syntactic Trees\",\"authors\":\"Zhengchen Zhang, Fuxiang Wu, Chenyu Yang, M. Dong, Fu-qiu Zhou\",\"doi\":\"10.21437/SSW.2016-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prosodic phrases (PPs) are important for Mandarin Text-To-Speech systems. Most of the existing PP detection methods need large manually annotated corpora to learn the models. In this paper, we propose a rule based method to predict the PP boundaries employing the syntactic information of a sentence. The method is based on the ob-servation that a prosodic phrase is a meaningful segment of a sentence with length restrictions. A syntactic structure allows to segment a sentence according to grammars. We add some length restrictions to the segmentations to predict the PP boundaries. An F-Score of 0.693 was obtained in the experiments, which is about 0.02 higher than the one got by a Conditional Random Field based method.\",\"PeriodicalId\":340820,\"journal\":{\"name\":\"Speech Synthesis Workshop\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Synthesis Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SSW.2016-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mandarin Prosodic Phrase Prediction based on Syntactic Trees
Prosodic phrases (PPs) are important for Mandarin Text-To-Speech systems. Most of the existing PP detection methods need large manually annotated corpora to learn the models. In this paper, we propose a rule based method to predict the PP boundaries employing the syntactic information of a sentence. The method is based on the ob-servation that a prosodic phrase is a meaningful segment of a sentence with length restrictions. A syntactic structure allows to segment a sentence according to grammars. We add some length restrictions to the segmentations to predict the PP boundaries. An F-Score of 0.693 was obtained in the experiments, which is about 0.02 higher than the one got by a Conditional Random Field based method.