{"title":"四旋翼飞行器路径跟踪的积分反步控制器","authors":"Wesam M. Jasim, Dongbing Gu","doi":"10.1109/ICAR.2015.7251516","DOIUrl":null,"url":null,"abstract":"An integral backstepping control algorithm is presented for the path tracking problem of a quadrotor in this work. The dynamical model of a quadrotor is represented based on unit quaternion representation and includes some modelled aerodynamical effects as a nonlinear part. The integral backstepping controller is designed for translational part to track the desired trajectory. Stability analysis is achieved via a suitable Lyapunov function. The external disturbance and model parameters uncertainty are considered in the simulation tests to justify the proposed controller stability. Simulation results are compared with a standard backstepping controller results.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Integral backstepping controller for quadrotor path tracking\",\"authors\":\"Wesam M. Jasim, Dongbing Gu\",\"doi\":\"10.1109/ICAR.2015.7251516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integral backstepping control algorithm is presented for the path tracking problem of a quadrotor in this work. The dynamical model of a quadrotor is represented based on unit quaternion representation and includes some modelled aerodynamical effects as a nonlinear part. The integral backstepping controller is designed for translational part to track the desired trajectory. Stability analysis is achieved via a suitable Lyapunov function. The external disturbance and model parameters uncertainty are considered in the simulation tests to justify the proposed controller stability. Simulation results are compared with a standard backstepping controller results.\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integral backstepping controller for quadrotor path tracking
An integral backstepping control algorithm is presented for the path tracking problem of a quadrotor in this work. The dynamical model of a quadrotor is represented based on unit quaternion representation and includes some modelled aerodynamical effects as a nonlinear part. The integral backstepping controller is designed for translational part to track the desired trajectory. Stability analysis is achieved via a suitable Lyapunov function. The external disturbance and model parameters uncertainty are considered in the simulation tests to justify the proposed controller stability. Simulation results are compared with a standard backstepping controller results.