Wi-Go:使用WiFi精细定时测量,精确可扩展的车辆定位

Mohamed Ibrahim, Ali Rostami, Bo Yu, Hansi Liu, M. Jawahar, Viet Nguyen, M. Gruteser, F. Bai, R. Howard
{"title":"Wi-Go:使用WiFi精细定时测量,精确可扩展的车辆定位","authors":"Mohamed Ibrahim, Ali Rostami, Bo Yu, Hansi Liu, M. Jawahar, Viet Nguyen, M. Gruteser, F. Bai, R. Howard","doi":"10.1145/3386901.3388944","DOIUrl":null,"url":null,"abstract":"Driver assistance and vehicular automation would greatly benefit from uninterrupted lane-level vehicle positioning, especially in challenging environments like metropolitan cities. In this paper, we explore whether the WiFi Fine Time Measurement (FTM) protocol, with its robust, accurate ranging capability, can complement current GPS and odometry systems to achieve lane-level positioning in urban canyons. We introduce Wi-Go, a system that simultaneously tracks vehicles and maps WiFi access point positions by coherently fusing WiFi FTMs, GPS, and vehicle odometry information together. Wi-Go also adaptively controls the FTM messaging rate from clients to prevent high bandwidth usage and congestion, while maximizing the tracking accuracy. Wi-Go achieves lane-level vehicle positioning (1.3 m median and 2.9 m 90-percentile error), an order of magnitude improvement over vehicle built-in GPS, through vehicle experiments in the urban canyons of Manhattan, New York City, as well as in suburban areas (0.8 m median and 3.2 m 90-percentile error).","PeriodicalId":345029,"journal":{"name":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Wi-Go: accurate and scalable vehicle positioning using WiFi fine timing measurement\",\"authors\":\"Mohamed Ibrahim, Ali Rostami, Bo Yu, Hansi Liu, M. Jawahar, Viet Nguyen, M. Gruteser, F. Bai, R. Howard\",\"doi\":\"10.1145/3386901.3388944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driver assistance and vehicular automation would greatly benefit from uninterrupted lane-level vehicle positioning, especially in challenging environments like metropolitan cities. In this paper, we explore whether the WiFi Fine Time Measurement (FTM) protocol, with its robust, accurate ranging capability, can complement current GPS and odometry systems to achieve lane-level positioning in urban canyons. We introduce Wi-Go, a system that simultaneously tracks vehicles and maps WiFi access point positions by coherently fusing WiFi FTMs, GPS, and vehicle odometry information together. Wi-Go also adaptively controls the FTM messaging rate from clients to prevent high bandwidth usage and congestion, while maximizing the tracking accuracy. Wi-Go achieves lane-level vehicle positioning (1.3 m median and 2.9 m 90-percentile error), an order of magnitude improvement over vehicle built-in GPS, through vehicle experiments in the urban canyons of Manhattan, New York City, as well as in suburban areas (0.8 m median and 3.2 m 90-percentile error).\",\"PeriodicalId\":345029,\"journal\":{\"name\":\"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386901.3388944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386901.3388944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

驾驶辅助和车辆自动化将极大地受益于不间断的车道水平车辆定位,特别是在大都市等具有挑战性的环境中。在本文中,我们探讨了WiFi精细时间测量(FTM)协议是否可以利用其鲁棒、精确的测距能力,补充现有的GPS和里程计系统,在城市峡谷中实现车道级定位。我们介绍了Wi-Go系统,该系统通过将WiFi ftm、GPS和车辆里程计信息相干地融合在一起,同时跟踪车辆并绘制WiFi接入点位置。Wi-Go还自适应控制来自客户端的FTM消息速率,以防止高带宽使用和拥塞,同时最大限度地提高跟踪精度。通过在纽约曼哈顿的城市峡谷以及郊区进行的车辆实验(中位数为0.8米,误差为3.2米),Wi-Go实现了车道级车辆定位(中位数为1.3米,误差为2.9米),比车载GPS提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wi-Go: accurate and scalable vehicle positioning using WiFi fine timing measurement
Driver assistance and vehicular automation would greatly benefit from uninterrupted lane-level vehicle positioning, especially in challenging environments like metropolitan cities. In this paper, we explore whether the WiFi Fine Time Measurement (FTM) protocol, with its robust, accurate ranging capability, can complement current GPS and odometry systems to achieve lane-level positioning in urban canyons. We introduce Wi-Go, a system that simultaneously tracks vehicles and maps WiFi access point positions by coherently fusing WiFi FTMs, GPS, and vehicle odometry information together. Wi-Go also adaptively controls the FTM messaging rate from clients to prevent high bandwidth usage and congestion, while maximizing the tracking accuracy. Wi-Go achieves lane-level vehicle positioning (1.3 m median and 2.9 m 90-percentile error), an order of magnitude improvement over vehicle built-in GPS, through vehicle experiments in the urban canyons of Manhattan, New York City, as well as in suburban areas (0.8 m median and 3.2 m 90-percentile error).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DigiScatter Key sensor discovery for quality audit of air sensor networks EMO SonicPrint: a generally adoptable and secure fingerprint biometrics in smart devices Osprey demo: a mmwave approach to tire wear sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1