定制的数据提取和处理,从社交媒体预测婴儿忧郁

Maryame Naji, Daoudi Najima, Rahimi Hasnae, R. Ajhoun
{"title":"定制的数据提取和处理,从社交媒体预测婴儿忧郁","authors":"Maryame Naji, Daoudi Najima, Rahimi Hasnae, R. Ajhoun","doi":"10.1109/ICSSD47982.2019.9002867","DOIUrl":null,"url":null,"abstract":"With the explosion of web 2.0, we are witnessing a sharp increase in Internet users such as a vertiginous evolution of social media. These Media constitute a source of rich and varied information for researchers in sentiment analysis. In this paper, we introduce a method to build a Dataset by extracting and processing Data from Twitter. In fact, we present in this paper, a novel approach to represent our Dataset the way to improve the prediction of profiles with depression by considering social media factors as analysis parameters.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Customized data extraction and processing for the prediction of Baby Blues from social media\",\"authors\":\"Maryame Naji, Daoudi Najima, Rahimi Hasnae, R. Ajhoun\",\"doi\":\"10.1109/ICSSD47982.2019.9002867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the explosion of web 2.0, we are witnessing a sharp increase in Internet users such as a vertiginous evolution of social media. These Media constitute a source of rich and varied information for researchers in sentiment analysis. In this paper, we introduce a method to build a Dataset by extracting and processing Data from Twitter. In fact, we present in this paper, a novel approach to represent our Dataset the way to improve the prediction of profiles with depression by considering social media factors as analysis parameters.\",\"PeriodicalId\":342806,\"journal\":{\"name\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSD47982.2019.9002867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9002867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着web 2.0的爆发,我们正在目睹互联网用户的急剧增加,比如社交媒体的飞速发展。这些媒体为情感分析研究者提供了丰富多样的信息来源。本文介绍了一种通过对Twitter数据进行提取和处理来构建数据集的方法。事实上,我们在本文中提出了一种新颖的方法来表示我们的数据集,即通过将社交媒体因素作为分析参数来提高抑郁症概况的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Customized data extraction and processing for the prediction of Baby Blues from social media
With the explosion of web 2.0, we are witnessing a sharp increase in Internet users such as a vertiginous evolution of social media. These Media constitute a source of rich and varied information for researchers in sentiment analysis. In this paper, we introduce a method to build a Dataset by extracting and processing Data from Twitter. In fact, we present in this paper, a novel approach to represent our Dataset the way to improve the prediction of profiles with depression by considering social media factors as analysis parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Merchant Ships that Most Likely to be Autonomously Operated Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark Predictive Process Monitoring related to the remaining time dimension: a value-driven framework Decomposition and Visualization of High-Dimensional Data in a Two Dimensional Interface Black SDN for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1