网络最优重构的实参数遗传算法

R. A. Ah King, B. Radha, H. Rughooputh
{"title":"网络最优重构的实参数遗传算法","authors":"R. A. Ah King, B. Radha, H. Rughooputh","doi":"10.1109/ICIT.2003.1290231","DOIUrl":null,"url":null,"abstract":"Distribution network reconfiguration belongs to a complex combinatorial optimization problem with multiple constraints. Solutions produced by heuristic search techniques often produce local optima. To overcome such a problem, a real-parameter genetic algorithm (GA) is used for solving the distribution network reconfiguration problem. Simulation results are presented for three test systems to demonstrate the applicability of the algorithm. Moreover, the effects of load variations on a practical network are also analyzed to determine the optimal configuration.","PeriodicalId":193510,"journal":{"name":"IEEE International Conference on Industrial Technology, 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A real-parameter genetic algorithm for optimal network reconfiguration\",\"authors\":\"R. A. Ah King, B. Radha, H. Rughooputh\",\"doi\":\"10.1109/ICIT.2003.1290231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribution network reconfiguration belongs to a complex combinatorial optimization problem with multiple constraints. Solutions produced by heuristic search techniques often produce local optima. To overcome such a problem, a real-parameter genetic algorithm (GA) is used for solving the distribution network reconfiguration problem. Simulation results are presented for three test systems to demonstrate the applicability of the algorithm. Moreover, the effects of load variations on a practical network are also analyzed to determine the optimal configuration.\",\"PeriodicalId\":193510,\"journal\":{\"name\":\"IEEE International Conference on Industrial Technology, 2003\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Industrial Technology, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2003.1290231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Industrial Technology, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2003.1290231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

配电网重构属于一个多约束的复杂组合优化问题。启发式搜索技术产生的解通常产生局部最优。为了克服这一问题,采用实参数遗传算法求解配电网重构问题。最后给出了三个测试系统的仿真结果,验证了算法的适用性。此外,还分析了实际网络中负载变化的影响,以确定最优配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real-parameter genetic algorithm for optimal network reconfiguration
Distribution network reconfiguration belongs to a complex combinatorial optimization problem with multiple constraints. Solutions produced by heuristic search techniques often produce local optima. To overcome such a problem, a real-parameter genetic algorithm (GA) is used for solving the distribution network reconfiguration problem. Simulation results are presented for three test systems to demonstrate the applicability of the algorithm. Moreover, the effects of load variations on a practical network are also analyzed to determine the optimal configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperable technologies for automation Genetic algorithm approach for autonomous vehicles Development of a unified simulation methodology for electric networks using sliding modes Assist control for positioning task by flexible master-slave system Suppressing sensor lift-off effects on cracks signals in surface magnetic field measurement technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1