南海溶解无机碘夏季沿18ï°N的分布

A. Long, A. Dang, H. Xiao, X. Yu
{"title":"南海溶解无机碘夏季沿18ï°N的分布","authors":"A. Long, A. Dang, H. Xiao, X. Yu","doi":"10.4172/2155-9910.1000169","DOIUrl":null,"url":null,"abstract":"Dissolved inorganic iodine (iodate and iodide) in seawater samples collected in the northern South China Sea (SCS) were investigated using differential pulse polarography and cathodic stripping square wave voltammetry, respectively. High concentration of iodide was observed in the surface layer in agreement with those previously reported for tropical waters. Iodine speciation and macro-nutrients were strongly coupled as observed in other tropical oceans. The vertical distributions of iodine and macro-nutrients can be classified into three biogeochemical regimes: (1) in the upper 50 m of the water column, low iodate was observed as nutrients were depleted and photosynthesis was low in summer. In contrast, substantial amount of iodide produced by high phytoplankton productivity and intense bacterial action in winter and spring was saved till summer; (2) in the water column between 50 m and the Tropical Water at around 150 m, the amount of iodide oxidation varied proportionally with nitrification, leading to rapid increase of nitrate and iodate with depth; (3) below the Tropical Water, iodate and nitrate are regenerated mainly due to re-mineralization of organic matter sinking from the euphotic zone. The distribution of dissolved inorganic iodine and hydrographic parameters (salinity, temperature, dissolved oxygen, and macro-nutrients) were influenced by the downwelling of the mesoscale warm eddy.","PeriodicalId":331621,"journal":{"name":"Journal of Marine Science: Research & Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Summer Distribution of Dissolved Inorganic Iodine along 18ï°N in the South China Sea\",\"authors\":\"A. Long, A. Dang, H. Xiao, X. Yu\",\"doi\":\"10.4172/2155-9910.1000169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissolved inorganic iodine (iodate and iodide) in seawater samples collected in the northern South China Sea (SCS) were investigated using differential pulse polarography and cathodic stripping square wave voltammetry, respectively. High concentration of iodide was observed in the surface layer in agreement with those previously reported for tropical waters. Iodine speciation and macro-nutrients were strongly coupled as observed in other tropical oceans. The vertical distributions of iodine and macro-nutrients can be classified into three biogeochemical regimes: (1) in the upper 50 m of the water column, low iodate was observed as nutrients were depleted and photosynthesis was low in summer. In contrast, substantial amount of iodide produced by high phytoplankton productivity and intense bacterial action in winter and spring was saved till summer; (2) in the water column between 50 m and the Tropical Water at around 150 m, the amount of iodide oxidation varied proportionally with nitrification, leading to rapid increase of nitrate and iodate with depth; (3) below the Tropical Water, iodate and nitrate are regenerated mainly due to re-mineralization of organic matter sinking from the euphotic zone. The distribution of dissolved inorganic iodine and hydrographic parameters (salinity, temperature, dissolved oxygen, and macro-nutrients) were influenced by the downwelling of the mesoscale warm eddy.\",\"PeriodicalId\":331621,\"journal\":{\"name\":\"Journal of Marine Science: Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science: Research & Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9910.1000169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science: Research & Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9910.1000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用差分脉冲极谱法和阴极溶出方波伏安法研究了南海北部海域海水中溶解无机碘(碘酸盐和碘化物)的含量。在表层观察到高浓度的碘化物,这与以前报道的热带水域的碘化物浓度一致。正如在其他热带海洋中所观察到的那样,碘的形成和大量营养物质是紧密耦合的。碘和常量营养元素的垂直分布可划分为3种生物地球化学格局:①夏季,在水柱上方50 m处,由于营养物质枯竭,光合作用较弱,呈低碘状态;相反,浮游植物高产和细菌在冬季和春季的强烈作用所产生的大量碘化物被保存到夏季;(2)在50 m至150 m左右的热带水域,碘化物氧化量随硝化作用成比例变化,导致硝酸盐和碘酸盐随深度迅速增加;(3)在热带水域以下,碘酸盐和硝酸盐的再生主要是由于从泛光带下沉的有机质的再矿化作用。中尺度暖涡下移影响了溶解无机碘的分布和水文参数(盐度、温度、溶解氧和常量营养物)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Summer Distribution of Dissolved Inorganic Iodine along 18ï°N in the South China Sea
Dissolved inorganic iodine (iodate and iodide) in seawater samples collected in the northern South China Sea (SCS) were investigated using differential pulse polarography and cathodic stripping square wave voltammetry, respectively. High concentration of iodide was observed in the surface layer in agreement with those previously reported for tropical waters. Iodine speciation and macro-nutrients were strongly coupled as observed in other tropical oceans. The vertical distributions of iodine and macro-nutrients can be classified into three biogeochemical regimes: (1) in the upper 50 m of the water column, low iodate was observed as nutrients were depleted and photosynthesis was low in summer. In contrast, substantial amount of iodide produced by high phytoplankton productivity and intense bacterial action in winter and spring was saved till summer; (2) in the water column between 50 m and the Tropical Water at around 150 m, the amount of iodide oxidation varied proportionally with nitrification, leading to rapid increase of nitrate and iodate with depth; (3) below the Tropical Water, iodate and nitrate are regenerated mainly due to re-mineralization of organic matter sinking from the euphotic zone. The distribution of dissolved inorganic iodine and hydrographic parameters (salinity, temperature, dissolved oxygen, and macro-nutrients) were influenced by the downwelling of the mesoscale warm eddy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Pathogenic Diseases on Corals Associated Risk Factors and Possible Devastation in Future in the Globe Efficiency Analysis with Different Models: The Case of Container Ports Climate: Water Security and Climate Change Design and Control of a Self-Balancing Autonomous Underwater Vehicle with Vision and Detection Capabilities Vitellogenin Level in the Plasma of Russian Sturgeon ( Acipenser gueldenstaedtii ) Northern Israel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1