方位船尾驱动拖船的推力器性能

L. Yiew, Yuting Jin, Y. Zheng, A. Magee
{"title":"方位船尾驱动拖船的推力器性能","authors":"L. Yiew, Yuting Jin, Y. Zheng, A. Magee","doi":"10.1115/omae2020-19067","DOIUrl":null,"url":null,"abstract":"\n The development of an accurate digital performance twin of a tug requires a complete understanding of its propulsive capacity and hull-thruster interactions. In this study, the propulsion characteristics of an Azimuth Stern Drive (ASD) tug is investigated using model-scale Reynolds-averaged Navier-Stokes (RANS) simulations. The propulsion plant consists of two counter-rotating thruster units, with each having a Ka4-70 series propeller and 19A duct profile. Comparisons in propulsive performances using the steady-state moving reference frame (MRF) approach and the transient rigid body motion (RBM) models are shown, and validated against data from openwater experiments. The MRF method gives sufficiently accurate predictions of thrust and torque in forward flow and moderate angles-of-attack, while the RBM method performs better at larger inflow angles. The effects of thruster-hull and thruster-thruster interactions on wake characteristics and propulsion performance are also investigated over a range of advance and inflow/azimuth angles. Convergence and mesh independence studies are conducted to determine the optimal spatial and temporal simulation parameters. Results from this study identify flow regimes where hull and thruster interactions are significant.","PeriodicalId":431910,"journal":{"name":"Volume 6B: Ocean Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thruster Performance of an Azimuth Stern Drive Tug\",\"authors\":\"L. Yiew, Yuting Jin, Y. Zheng, A. Magee\",\"doi\":\"10.1115/omae2020-19067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of an accurate digital performance twin of a tug requires a complete understanding of its propulsive capacity and hull-thruster interactions. In this study, the propulsion characteristics of an Azimuth Stern Drive (ASD) tug is investigated using model-scale Reynolds-averaged Navier-Stokes (RANS) simulations. The propulsion plant consists of two counter-rotating thruster units, with each having a Ka4-70 series propeller and 19A duct profile. Comparisons in propulsive performances using the steady-state moving reference frame (MRF) approach and the transient rigid body motion (RBM) models are shown, and validated against data from openwater experiments. The MRF method gives sufficiently accurate predictions of thrust and torque in forward flow and moderate angles-of-attack, while the RBM method performs better at larger inflow angles. The effects of thruster-hull and thruster-thruster interactions on wake characteristics and propulsion performance are also investigated over a range of advance and inflow/azimuth angles. Convergence and mesh independence studies are conducted to determine the optimal spatial and temporal simulation parameters. Results from this study identify flow regimes where hull and thruster interactions are significant.\",\"PeriodicalId\":431910,\"journal\":{\"name\":\"Volume 6B: Ocean Engineering\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-19067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发一种精确的拖船数字性能孪生体需要完全了解其推进能力和船体与推进器的相互作用。在这项研究中,使用模型尺度的reynolds -average Navier-Stokes (RANS)模拟研究了方位船尾驱动(ASD)拖船的推进特性。推进装置由两个反向旋转推进器单元组成,每个单元都有一个Ka4-70系列螺旋桨和19A管道剖面。比较了稳态运动参考系(MRF)方法和瞬态刚体运动(RBM)模型的推进性能,并通过开放水域实验数据进行了验证。MRF方法可以在前流和中等迎角时提供足够准确的推力和扭矩预测,而RBM方法在大入流角时表现更好。在一定的推进角和入流/方位角范围内,还研究了推进器-船体和推进器-推进器相互作用对尾流特性和推进性能的影响。通过收敛性和网格独立性研究确定了最优的时空模拟参数。本研究的结果确定了船体和推进器相互作用显著的流动状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thruster Performance of an Azimuth Stern Drive Tug
The development of an accurate digital performance twin of a tug requires a complete understanding of its propulsive capacity and hull-thruster interactions. In this study, the propulsion characteristics of an Azimuth Stern Drive (ASD) tug is investigated using model-scale Reynolds-averaged Navier-Stokes (RANS) simulations. The propulsion plant consists of two counter-rotating thruster units, with each having a Ka4-70 series propeller and 19A duct profile. Comparisons in propulsive performances using the steady-state moving reference frame (MRF) approach and the transient rigid body motion (RBM) models are shown, and validated against data from openwater experiments. The MRF method gives sufficiently accurate predictions of thrust and torque in forward flow and moderate angles-of-attack, while the RBM method performs better at larger inflow angles. The effects of thruster-hull and thruster-thruster interactions on wake characteristics and propulsion performance are also investigated over a range of advance and inflow/azimuth angles. Convergence and mesh independence studies are conducted to determine the optimal spatial and temporal simulation parameters. Results from this study identify flow regimes where hull and thruster interactions are significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Cavitation Motion of Underwater Vehicle With Protrusions Neural Network-Based Method for Structural Damage and Scour Estimation Using Modal Parameters and Dynamic Responses Detailed Study on the Behavior of Ships in Very Short Waves Nonlinear and Machine-Learning-Based Station-Keeping Control of an Unmanned Surface Vehicle Instantaneous Center of Rotation of a Vessel Submitted to Oblique Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1