用序列泄漏积分器映射分析连续时间序列

C. Privitera, P. Morasso
{"title":"用序列泄漏积分器映射分析连续时间序列","authors":"C. Privitera, P. Morasso","doi":"10.1109/ICNN.1994.374733","DOIUrl":null,"url":null,"abstract":"The problem to detect and recognize the occurrence of specific events in a continually evolving environment, is particularly important in many fields, starting from motor planning. In this paper, the authors propose a two-dimensional map, where the processing elements correspond to specific instances of leaky integrators whose parameters (or tops) are learned in a self-organizing manner: in this way the map becomes a topologic representation of temporal sequences whose presence in a continuous temporal data flow is detectable by means of the activation level of the corresponding neurons.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The analysis of continuous temporal sequences by a map of sequential leaky integrators\",\"authors\":\"C. Privitera, P. Morasso\",\"doi\":\"10.1109/ICNN.1994.374733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem to detect and recognize the occurrence of specific events in a continually evolving environment, is particularly important in many fields, starting from motor planning. In this paper, the authors propose a two-dimensional map, where the processing elements correspond to specific instances of leaky integrators whose parameters (or tops) are learned in a self-organizing manner: in this way the map becomes a topologic representation of temporal sequences whose presence in a continuous temporal data flow is detectable by means of the activation level of the corresponding neurons.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

从运动规划开始,在不断变化的环境中检测和识别特定事件的发生问题在许多领域尤为重要。在本文中,作者提出了一个二维映射,其中处理元素对应于泄漏积分器的特定实例,其参数(或顶部)以自组织的方式学习:通过这种方式,映射成为时间序列的拓扑表示,其在连续时间数据流中的存在通过相应神经元的激活水平可检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The analysis of continuous temporal sequences by a map of sequential leaky integrators
The problem to detect and recognize the occurrence of specific events in a continually evolving environment, is particularly important in many fields, starting from motor planning. In this paper, the authors propose a two-dimensional map, where the processing elements correspond to specific instances of leaky integrators whose parameters (or tops) are learned in a self-organizing manner: in this way the map becomes a topologic representation of temporal sequences whose presence in a continuous temporal data flow is detectable by means of the activation level of the corresponding neurons.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1