{"title":"gPVA:研磨工具分类系统","authors":"C. Vogt, O. Faehnle, R. Rascher","doi":"10.1117/12.2318695","DOIUrl":null,"url":null,"abstract":"The Grinding Process Validation Approach (gPVA) presented in 2017 enables the determination of suitable parameter windows for grinding tools. The abrasion properties of grinding tools are determined experimentally. The collected data can be used to derive optimum parameters for defined grinding tasks so that service life, process stability and productivity can be maximized. In this publication, the gPVA method is used to compare different grinding tools. Differences in stock removal performance with identical specified tools from different manufacturers are investigated. In addition to that, recommended tools for fine grinding of fused silica are examined also.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"gPVA: a system for the classification of grinding tools\",\"authors\":\"C. Vogt, O. Faehnle, R. Rascher\",\"doi\":\"10.1117/12.2318695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Grinding Process Validation Approach (gPVA) presented in 2017 enables the determination of suitable parameter windows for grinding tools. The abrasion properties of grinding tools are determined experimentally. The collected data can be used to derive optimum parameters for defined grinding tasks so that service life, process stability and productivity can be maximized. In this publication, the gPVA method is used to compare different grinding tools. Differences in stock removal performance with identical specified tools from different manufacturers are investigated. In addition to that, recommended tools for fine grinding of fused silica are examined also.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2318695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2318695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
gPVA: a system for the classification of grinding tools
The Grinding Process Validation Approach (gPVA) presented in 2017 enables the determination of suitable parameter windows for grinding tools. The abrasion properties of grinding tools are determined experimentally. The collected data can be used to derive optimum parameters for defined grinding tasks so that service life, process stability and productivity can be maximized. In this publication, the gPVA method is used to compare different grinding tools. Differences in stock removal performance with identical specified tools from different manufacturers are investigated. In addition to that, recommended tools for fine grinding of fused silica are examined also.