基于深度学习的ComcepNet毫米波大规模MIMO系统混合预编码

C. Sidharth, S. Hiremath, S. K. Patra
{"title":"基于深度学习的ComcepNet毫米波大规模MIMO系统混合预编码","authors":"C. Sidharth, S. Hiremath, S. K. Patra","doi":"10.1109/ICCSP48568.2020.9182336","DOIUrl":null,"url":null,"abstract":"Millimeter Wave (mmWave) and massive MIMO (Multiple Input Multiple Output) are promising solutions for 5G communications. Hybrid precoding architecture (analog and digital) is generally employed to resolve high hardware complexity and energy consumption issues. The current hybrid precoding architectures are computationally complex. This proposes a novel deep neural network based precoding architecture named ‘ComcepNet’. The network combines the features of Complex Convolution blocks and Inception Network. The network is observed to deliver superior performance in terms of accuracy and achievable datarate compared to the present Autoprecoder network.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Learning based Hybrid Precoding for mmWave Massive MIMO system using ComcepNet\",\"authors\":\"C. Sidharth, S. Hiremath, S. K. Patra\",\"doi\":\"10.1109/ICCSP48568.2020.9182336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter Wave (mmWave) and massive MIMO (Multiple Input Multiple Output) are promising solutions for 5G communications. Hybrid precoding architecture (analog and digital) is generally employed to resolve high hardware complexity and energy consumption issues. The current hybrid precoding architectures are computationally complex. This proposes a novel deep neural network based precoding architecture named ‘ComcepNet’. The network combines the features of Complex Convolution blocks and Inception Network. The network is observed to deliver superior performance in terms of accuracy and achievable datarate compared to the present Autoprecoder network.\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

毫米波(mmWave)和大规模MIMO(多输入多输出)是5G通信的有前途的解决方案。通常采用混合预编码架构(模拟和数字)来解决高硬件复杂性和能耗问题。目前的混合预编码体系结构计算复杂。提出了一种新的基于深度神经网络的预编码体系结构“ComcepNet”。该网络结合了复杂卷积块和盗梦网络的特点。与目前的Autoprecoder网络相比,该网络在准确性和可实现的数据方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning based Hybrid Precoding for mmWave Massive MIMO system using ComcepNet
Millimeter Wave (mmWave) and massive MIMO (Multiple Input Multiple Output) are promising solutions for 5G communications. Hybrid precoding architecture (analog and digital) is generally employed to resolve high hardware complexity and energy consumption issues. The current hybrid precoding architectures are computationally complex. This proposes a novel deep neural network based precoding architecture named ‘ComcepNet’. The network combines the features of Complex Convolution blocks and Inception Network. The network is observed to deliver superior performance in terms of accuracy and achievable datarate compared to the present Autoprecoder network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1